思考と決断のPM力

PMの真価

スキルシート上にあるPMというのは、どういった開発言語や開発環境などを使ってきたかという内容であることが多く、SEの延長という意味合いが強く残っている。もし、期待するポジションが発想力や提案力にあるとすれば、姿勢をみることが大切となる。

従順の呪縛

就職氷河期と呼ばれる世代より上の年齢層では、常に従うことを幼少期から叩き込まれていると考えられる。日本では「禁止」か「許可」かを常に意識しながら仕事をしており、「許可されるまでは禁止されている」と考えているのではないかと推察される。

失敗からの成長

正しいか、間違っているか、の判断基準しか持ち合わせていない場合、何か問題が発生したときに時間を遡ってどこで判断を間違えたのかを追求する。それは大切なことであるが、実際のプロジェクトでは誤ったことを反省しつつ修正しながら進むことが大切である。

判断力の真髄

エンジニア出身のPM(開発プロジェクトのPM)だと、禁止か許可かというデジタルのような見方をしている人もいる。特に今日のシステムに関するプロジェクトでは、ゼロかイチだけでは判断できないような、ウエットでアナログな状況判断が必要となる。

まとめ

たとえ能力の高いPMだったとしても、仕事になると発想することや作ることの楽しみより、ミスによる懲罰を恐れたりするために、無難で当たり障りのない判断をしがちである。システムに関するプロジェクトがなかなか前へ進まない理由でもある。

関連記事

開発の相場

相場の不在

フルスクラッチでのシステム開発に相場はない。相場とは商品が一般的に流通している商品など数が多い場合は、競争原理も働き、金額がある一定の範囲に収まってくるものである。

建築との差異

たとえば、一戸建て建築であれば、建物の規模と資材、それに加えて職人の人工で金額が決まる。フルスクラッチのシステム開発は、つまり極めて特殊な特注品を作るようなものであるため、システム開発に相場という概念が基本的にはないのである。

人件費の実態

システム(ソフトウェア)は一戸建てのように、基本的には材料費はかからない。システム開発の費用のほとんどは人件費である。大工職人の人工と同じように人月単価と呼ばれるSE1人が1ヶ月働く金額で相場を知ることができるのである。

工期の変動

建物を建てることと比べるとシステムやソフトウェアは無形の物となるため、1ヶ月の労働力を推し量ることは困難である。個人のプログラミングの早さによって、納期が早くなったり遅くなったりするのである。

まとめ

SEは過去のプロジェクト参画実績から、同じようなプロジェクトに何度も参画していれば手練れでスキルが高いと評価される。システムに関わる人材の評価が困難な点は、プロジェクトに参画する経験値と、本当の意味でのスキルが比例するわけではないことである。本当の意味でのスキルとはプロジェクトを成功させられるかどうかを指すのである。

続きを見る >

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >

リーダーの多忙による弊害

危険な繁忙化

なぜか忙しくしているPMやリーダーとなるSEがいれば危険信号である。リーダーが忙しくなると全体的な最適化や効率的な運用ができていない可能性がある。結果として、無駄に費用がかかったり、技術的負債が大きくなったりする。

役割分担の歪み

システムのユーザー側から見ると、SEという見え方しかしないと思われるが、実際はシステムの運用や開発には細かな作業分担が発生する。この作業分担ができていない場合は窓口のSEが余計な作業を行っている可能性がある。役割分担の不均衡がもたらす忙しさではなく、まったく仕事としてやらなくてもよいような事に時間を使っていて忙しい場合がある。

プロセスの確立

たとえば、プログラムが解析できる人をリーダーとしてしまうと、開発者に手取り足取り指示をしてしまうことがある。もし、リーダーがプログラムレビューなどの作業や、開発者にプログラム上の細かな指示をしている場合は注意が必要である。何を基準にプログラムレビューや指示を行うのか、という仕事を見える化し、仕組化することがリーダーの務めである。

俯瞰的視点

木を見て森を見ずという言葉があるように、リーダーとなる人は指針を作ったりメンバーをプロジェクト成功へ導く役割がある。リーダーが開発メンバーと同じように木ばかりを見ているようであれば、森を見る人が非エンジニアであるユーザー側となってしまうことが考えられる。

まとめ

誰が森を見るのか、リーダーやPMが常に忙しそうにしている場合は、何に時間を使っているのか調査する必要がある。実はここがボトルネックになっていてプロジェクトの進行が思うようにいかなかったり、頻繁にリスケが発生していることも多くある。しかし、これは本人にヒアリングするだけでは表面化しないため、ユーザー側の担当者やプログラマーなどの周辺人員から浮き彫りにすることが望ましい。

続きを見る >