オオカミ少年化の弊害

SE常駐の負連鎖

システム開発会社側の立場からすると、時間ばかり取るよくないクライアントはできるだけ減らさないと、他の優良クライアントに迷惑がかかる。特に横にいてくれないと進めることができないというニーズが、SE常駐の常態化してしまっている要因である。

常駐要請の心理

SEへの安心感の欠如が常駐しないといけない理由のひとつである。隣にいれば、何かあった時にすぐに指示が出せる。たとえば、サーバが止まったときにすぐに復旧させることが可能である。

対症療法の克服

隣にSEを常駐させて対応できてしまうがゆえに対処療法になってしまいがちである。本来であれば、サーバが止まらないようにすべきであり、リカバリのプランがしっかりと計画されていることが理想である。

脱属人化の施策

SE側も、すぐに復旧させられるからといった怠慢により、事前に問題や対策を考えておくといった準備を怠ってしまう。そう考えると、発注側のITリテラシーも非常に重要である。属人化しないように仕組化するにはどうするかを常に整理する意識を持つことが大切である。

まとめ

発注側は感情だけでプロジェクトを遂行すると、何かあった時に何でもSEを急かしてしまう。これによって、発注側はオオカミ少年化してしまうため、本当に急がないといけないときに対応が遅れてしまうのである。

関連記事

AIチャットボットの現実

チャットボット幻想と現実

人手不足や生産性向上が叫ばれる中、多くの企業で「問い合わせ業務の多くはAIチャットボットで代替できるのではないか」という期待が高まっている。確かに、人間と自然に会話できるAIの実現は、多くの技術者が長年抱き続けた夢でもあった。しかし、過去には言語理解や文脈の把握に技術的な限界があり、実用化には程遠いというのが現実だった。こうした期待と現実のギャップが、AIチャットボット導入の失敗要因となってきた。

チャットボットの進化

2000年代には、ルールベースやシナリオ型のチャットボットが登場し、定型的なカスタマーサポートなどで徐々に実用化され始めた。とはいえ、自然な対話というより「決められた会話」に近く、限定的な使い方にとどまっていた。ところが2020年代に入り、ディープラーニングの飛躍とともに自然言語処理の精度が格段に向上し、Google、Facebook、OpenAIといった技術企業が次々に大規模言語モデル(LLM)を発表したことで、チャットボットは“おしゃべりマシン”から会話パートナーへと進化した。

ChatGPTの衝撃

ChatGPTのような生成AIが登場し、誰でも使えるようになったことで、AIチャットボットの活用は一気に加速した。従来のようなFAQへの対応だけでなく、長文の文書作成や要約、翻訳、さらにはプログラミング支援など、より複雑で創造的な作業もこなせるようになっている。人間の知的作業領域に深く入り込み、単なる効率化ツールにとどまらない存在となった。もはや「使えるかどうか」ではなく「どう使うか」が問われるフェーズに突入している。

業界全体への波及

AIチャットボットの導入は、ビジネスだけでなく教育、医療、自治体など、多様な分野に広がっている。学生の学習サポートから医療問診の補助、行政窓口での自動対応まで、AIは生活の一部に組み込まれつつある。この変化は、かつてITインフラを支えてきた旧世代のエンジニア像を超える大転換だ。業務が高度化し、かつ柔軟性が求められる現代において、AIと協働する力が企業と個人の双方に求められている。

まとめ

AIチャットボットは、単なる業務効率化ではなく、人間の知的作業を補助する“共創”のパートナーである。ただし誤情報、倫理、プライバシーといった課題も存在する。こうした課題を踏まえ、社会全体でのルール整備と、使い方の成熟が必要だ。AI導入を成功させるには、「AIも使い様」という視点が欠かせない。ITの導入に乗り遅れてきた企業ほど、AI活用でも二の舞になりかねない。アタラキシアDXは、AI黎明期からの導入支援経験をもとに、技術とビジネスの橋渡しを支援している。

続きを見る >

開発遅延の打開策

システム開発の現状と課題

数名で開発した初期のシステム構築から、システム会社を変更して大がかりなリプレイスを行い、保守運用を実施しているが、月々の費用が高額であるわりに、開発スピードも遅い。開発スピードが遅いため、新しい機能を実装していけない。

不具合と開発の不透明性

リリースから何年も経っているのに不具合がなくならない。開発会社からの報告が曖昧で何にお金を支払っているのか謎のままであることが多い。

コスト削減と資源最適化

開発スピードを上げるには、システム開発コストの削減をしなければならない。コストを削減するということは、それで浮いたコストを開発に割り当てることができるため、結果的に開発スピードがあがることを意味する。

開発の透明性と妥当性

そのためにしなければならないことは、開発工程や開発過程の見える化および妥当性を担保することである。システムの比較検討ができないため、システム開発のコミュニケーションは一般的なものであると思い込んでいる。システム発注の担当者はシステムのことがわからないから、システム開発の進め方に違和感があったとしても技術者が言うことを信用するほかないと思っている。

まとめ

結果として、技術者の工数と称して月々の費用や、ひどいものでは言語のバージョンアップと称して、何もしていないことに費用を支払っていることもある。不明点はシステム発注の担当者が理解できるまで聞くべきである。

続きを見る >

要件定義の問題点

はじめに

会社の雰囲気や要件定義の内容をみれば、おおよそそのプロジェクトが成功するか否かがわかる。うまくいかない場合のユーザー側とシステム会社側の原因の一例である。

・要件定義をシステム会社に任せてしまう
・元請けシステム会社が無理な要件でも受注する
・準委任契約の人材紹介会社がリスクなく利鞘を稼げる
・末端エンジニアの作業遂行以外の責任
・ユーザー側、発注側の担当者が保身する

今回はその背景を説明したい。

要件定義の丸投げ

要件定義をシステム会社に任せてしまう。
要件定義はシステム会社がユーザー企業をヒアリングして作るものではなく、ユーザーとシステム会社が議論を重ねることで答えを出していくものにしなくてはならない。ユーザーが目指すべき姿と、システム会社が実現すべき姿のすり合わせが重要である。

無理な受注

元請けシステム会社が無理な要件でも受注する。
無理な要件でも受注できるのは、発注側にもシステムの知識がないため、ゴールが曖昧なまま元請けシステム会社が請け負ってしまうからである。もし、発注側にITリテラシーがなければ、パワハラなども発生する可能性が高い。したがって、元請けシステム会社に精神的な課題を回避するため、要件定義を作る人でさえも二次受けシステム会社から集めてくることがある。

人材紹介会社の利益構造

準委任契約の人材紹介会社がリスクなく利鞘を稼げる。
システムの完成責任は負わず、作業だけ請け負うことになるため、人さえ集めてくれば、そこでリスクなく利鞘が稼げる。発注側のユーザー企業からすれば、契約は元請けシステム会社であるため、3次請け、4次請けを使おうが、完成さえすればいいと考えていることが多い。

エンジニアの責任範囲

末端エンジニアの作業遂行以外の責任。
末端のエンジニアには、クライアントとの調整や導入、一定品質や納期の遵守など、責任感や危機感がないこともある。プロジェクトの全貌が見えないことも原因である。また、言われたことをやるだけで報酬がそこそこあるのが、システムエンジニアの業界だったりするので、作業をした時間分だけ報酬を支払ってほしい、という話にもなる。

発注側の保身

ユーザー側、発注側の担当者が保身する。
システム開発がうまくいかなかったときに、発注側の担当者がシステム会社に責任を押し付けるといったことがある。これは信頼関係によるもので、共同でプロジェクトを成功させようという目標が作れなかった場合に発生する。システム会社を業者扱いして要件定義を丸投げしてしまわないようにしなければならない。

続きを見る >