要件定義のアプローチ

要件定義の基本

すべてをシステムで解決してしまおうとする要件定義には注意が必要である。システムの成功の可否は要件定義にかかっていると言っても過言ではない。しかし、十分に要件定義の時間を使ったにも関わらず、ITプロジェクトが失敗することがある。

規模別の要件定義

システム構築の規模によって、要件定義の粒度が変わる。小さなITプロジェクトの場合は要件定義をせずにプロトタイプを作りながらシステム構築を進めるといった方法がある。これをアジャイル開発、プロトタイプ開発と呼ぶ。

要件定義の本質

要件定義の粒度は時間を掛ければ細かくなるわけではない。ユーザー側でも要件定義を進めるにつれて、想定している機能の矛盾点が出てくることがある。この矛盾点を解消していくこと自体を要件定義としてはならない。要件定義はあくまで本質的なコアとなる部分から膨らませることが重要である。

対話型要件定義

要件定義フェーズで失敗するパターンは、ユーザー側との対話ではなく、システム会社側がヒアリングに徹する場合である。ユーザー側はITを利用してどのようなことができるかを知らない可能性が高いため、システム専門家がそれを鵜呑みにした仕様で要件を固めてしまうと、製造工程で無駄な工数が発生し予算をオーバーしてしまうことがある。

まとめ

本質的な要件をコミュニケーションによって、はっきりさせていく作業こそが要件定義と言えるのである。さまざまな視点から何度も繰り返し要件をなぞることで粒度が落ちていき、適切な要件定義書となる。何でもかんでもシステム化せず、オペレーションとの関係性を見合わせながら進めることが望ましい。

関連記事

AIで何ができるのか

AI vs 人間

AIは人間を超えるのか?などの質問をされることがよくある。シンギュラリティと呼ばれているが、超える超えないの単一線上で比較できるものではないと考える。たとえば、計算の速さだけでいうと人間よりも、はるかに早いと言える。

AI導入の両面性

とにかく労働人口の減少によって、機械化やAI化が急がれていると思う。すでに、画像作成や文章作成などは置き換わっている事例も多くみられるようになった。そんな中で、よくあるのが「AIで何かできませんか?」という問い合わせである。

AI時代のDX

DXという概念にも通ずる話だが、デジタル化するだけでは、いわゆるデジタル変革にはならない。ペーパーレス化ってやつだ。同じように、AIを使うことを目的としてしまうと業務に対して便益がない場合も多いようだ。したがって、AIを利用するということをDXと定義するのであれば、日常業務を整理して、どこをAIに任せるのかを検討することが大切である。

AI活用の極意

AIにも得手不得手があり、計算はもちろん得意だが、質問の仕方や指示の仕方で活用レベルは大きく変わる。プロンプトと呼ばれるものはコピーして使えるが、AIを活用しきろうとするならば、自分でプロンプトを考えれる必要がある。つまり、現時点では賢いAIなのではなく、使う側が上手に使わないとならない。

まとめ

AIの使いどころについて、多くは無理やり使おうとするため、AIを活用する場面でないことも多くある。また、ユーザー企業に関わらずシステム会社でもAIの活用は進んでおり、画像の生成やプログラミングの一部はすでに人間が行わなくてもよい段階にある。これから先もこれは加速することだろう。

続きを見る >

DX抵抗の本質

「現状維持」の本音

DX推進の現場で最もよく聞かれる言葉が「今のままで十分回っている」という声である。しかし、この言葉の裏には単なる保守的な姿勢だけではない、切実な事情が隠れている。現場担当者にとって、新しいシステムの導入は「業務負担の増加」と「習熟までの不安」を意味する。日々の業務をこなしながら新しいツールを覚える余裕がない、というのが本音なのだ。この心理を理解せずにDXを押し進めても、形だけの導入に終わってしまう。

抵抗の3要因

現場のDX抵抗には、大きく3つの要因がある。1つ目は「自分の仕事がなくなるのでは」という雇用への不安である。効率化によって人員削減されるのではという恐れが、無意識の抵抗を生む。2つ目は「これまでのやり方を否定された」という感情的な反発である。長年培ってきた業務ノウハウを軽視されたように感じ、心理的な壁が生まれる。3つ目は「導入後のサポート体制への不信感」である。過去にシステム導入で混乱した経験があると、また同じことが起きるのではと警戒心が強まる。これらは論理ではなく感情の問題であり、丁寧な対話なしには解消できない。

現場を味方にする方法

現場の抵抗を協力に変えるには、戦略的なアプローチが必要である。まず「スモールスタート」で成功体験を積むことが重要だ。全社一斉導入ではなく、協力的な部署や担当者から小さく始め、目に見える成果を出すことで周囲の関心を引く。次に「現場キーマンの巻き込み」が効果的である。影響力のあるベテラン社員をプロジェクトメンバーに加え、当事者意識を持ってもらうことで、自然と周囲への波及効果が生まれる。そして最も大切なのが「目的の共有」である。DXは手段であり、目的は現場の負担軽減や働きやすさの向上であることを繰り返し伝える必要がある。「あなたの仕事を楽にするため」というメッセージが、抵抗感を和らげる鍵となる。

DX定着の共通点

DXに成功している企業には共通点がある。それは導入後も現場との対話を継続していることだ。システムを入れて終わりではなく、定期的なフィードバック収集と改善を繰り返すことで、現場の声がツールに反映される実感が生まれる。この「聞いてもらえている」という感覚が、次の変化への受容性を高めるのである。また、成功企業は小さな改善成果を積極的に社内共有している。「このツールで月5時間の作業が削減できた」といった具体的な数字は、懐疑的だった社員の心を動かす。DXは一度きりのプロジェクトではなく、現場と伴走し続ける長期的な取り組みであると理解することが、真の定着への第一歩である。

まとめ

現場のDX抵抗は、単なる保守性ではなく、不安や過去の経験に基づく合理的な反応である。この心理を理解し、スモールスタート、キーマンの巻き込み、目的の共有という3つのアプローチで丁寧に進めることが成功の鍵となる。DXは現場を敵に回すものではなく、現場を味方につけてこそ真の効果を発揮する。

続きを見る >

技術的負債の返済方法

負債の本質

技術的負債には、設計負債やコード負債がある。金銭的な負債であれば借入金やマイナスの表記で数字化できるのだが、技術的負債においては数字化できないことがとても難しい点である。経営に関するほとんどのことは定量化や定性化が可能だが、たとえば企業創業者の発想する「野生の勘」を直接的に数字化できないように技術的負債も一筋縄では見える化しない。

設計時の対策

技術的負債の中でもコード負債については、システム開発の現場からよく発想されるリファクタリングや再構築などを行うことで比較的わかりやすい返済方法となる。知らない人が作ったプログラムや古くなったプログラムのバージョンなど、リスクを表現し対応することができる。何よりも最初の企画設計段階で負債が積みあがりにくい仕組みを考えることが大切である。

高負担な設計

技術的負債の中でも利息の高い負債が設計負債である。単体機能における設計であれば、モジュールごとの再設計によって返済が可能である。しかし、プログラムは複数のモジュールが絡まり合っていることがほとんどなので、複雑なオペになってしまう。また、稼働中のシステムにわざわざ再設計したプログラムを導入するリスクに対して、得れるメリットも少ないので見過ごされがちである。設計能力は例えば、紙というオブジェクトのメソッド(振る舞い)とプロパティ(保持する情報)を聞いて正しい答えが帰ってくれば多少安心であろう。紙の振る舞いは燃えるであり保持する情報は面積などがある。

根本的解決

しかし、技術的負債はこのように目に見えやすい設計負債やコード負債が致命的になることは少なく、やはりその上層でどのような指針に基づいてシステム運用がなされてきたか、また長期視点で一貫したメンテナンスを行うことが必要である。システムの維持には保守費用や運用費用を払っていることが多いと思うが、これだけでは将来の負債を減らしていくことはできない。やはり、鳥の目を持つITコンサルタントやITアナリストなどの役割を持つメンバーが必要である。

まとめ

ITコンサルタントやアナリストは、すぐに利益も生まない、経費を削減するわけでもないといったコストセンターとしてのポジションなので、あまり起用していない中小企業も多いようである。投資に対する効果が見えにくいのは、料理でいう香辛料と同じなのかもしれない。その少しの投資が未来を大きく変えることになる。IT技術は日進月歩で発展するからである。

続きを見る >