要件定義のアプローチ

要件定義の基本

すべてをシステムで解決してしまおうとする要件定義には注意が必要である。システムの成功の可否は要件定義にかかっていると言っても過言ではない。しかし、十分に要件定義の時間を使ったにも関わらず、ITプロジェクトが失敗することがある。

規模別の要件定義

システム構築の規模によって、要件定義の粒度が変わる。小さなITプロジェクトの場合は要件定義をせずにプロトタイプを作りながらシステム構築を進めるといった方法がある。これをアジャイル開発、プロトタイプ開発と呼ぶ。

要件定義の本質

要件定義の粒度は時間を掛ければ細かくなるわけではない。ユーザー側でも要件定義を進めるにつれて、想定している機能の矛盾点が出てくることがある。この矛盾点を解消していくこと自体を要件定義としてはならない。要件定義はあくまで本質的なコアとなる部分から膨らませることが重要である。

対話型要件定義

要件定義フェーズで失敗するパターンは、ユーザー側との対話ではなく、システム会社側がヒアリングに徹する場合である。ユーザー側はITを利用してどのようなことができるかを知らない可能性が高いため、システム専門家がそれを鵜呑みにした仕様で要件を固めてしまうと、製造工程で無駄な工数が発生し予算をオーバーしてしまうことがある。

まとめ

本質的な要件をコミュニケーションによって、はっきりさせていく作業こそが要件定義と言えるのである。さまざまな視点から何度も繰り返し要件をなぞることで粒度が落ちていき、適切な要件定義書となる。何でもかんでもシステム化せず、オペレーションとの関係性を見合わせながら進めることが望ましい。

関連記事

オオカミ少年化の弊害

SE常駐の負連鎖

システム開発会社側の立場からすると、時間ばかり取るよくないクライアントはできるだけ減らさないと、他の優良クライアントに迷惑がかかる。特に横にいてくれないと進めることができないというニーズが、SE常駐の常態化してしまっている要因である。

常駐要請の心理

SEへの安心感の欠如が常駐しないといけない理由のひとつである。隣にいれば、何かあった時にすぐに指示が出せる。たとえば、サーバが止まったときにすぐに復旧させることが可能である。

対症療法の克服

隣にSEを常駐させて対応できてしまうがゆえに対処療法になってしまいがちである。本来であれば、サーバが止まらないようにすべきであり、リカバリのプランがしっかりと計画されていることが理想である。

脱属人化の施策

SE側も、すぐに復旧させられるからといった怠慢により、事前に問題や対策を考えておくといった準備を怠ってしまう。そう考えると、発注側のITリテラシーも非常に重要である。属人化しないように仕組化するにはどうするかを常に整理する意識を持つことが大切である。

まとめ

発注側は感情だけでプロジェクトを遂行すると、何かあった時に何でもSEを急かしてしまう。これによって、発注側はオオカミ少年化してしまうため、本当に急がないといけないときに対応が遅れてしまうのである。

続きを見る >

ローコード開発とAI活用

AIとローコードの融合

ローコード開発プラットフォームの普及により、非エンジニアでもアプリケーション開発が可能になった現在、生成AIの活用が大きな注目を集めている。ChatGPTやCopilotなどのAIツールを組み合わせることで、開発スピードがさらに向上すると期待されているが、本当にすべてのローコード開発にAIが必要なのだろうか。コスト、品質、保守性など多角的な視点から、AI導入の真の価値を見極めることが、企業のDX戦略において極めて重要になっている。

コード生成の現実

生成AIによるコード生成は確かに魅力的だが、実際の品質には課題がある。AIが生成するコードは、単純な処理であれば高品質だが、複雑なビジネスロジックや例外処理が絡むと、不完全なコードが生成されることが少なくない。さらに深刻な問題は要件定義の壁である。AIは与えられたプロンプトに基づいてコードを生成するが、曖昧な要件や暗黙の前提条件を正確に理解することは困難である。結果として、開発者は生成されたコードを詳細に検証し、修正する必要があり、期待したほどの効率化が実現しないケースも多く見られる。

保守性のコスト

AIを活用したローコード開発において、最も見落とされがちなのが保守性の課題である。AI生成コードは、その時点では動作しても、後から読み解くことが困難な構造になっていることがある。変数名が不適切だったり、処理の意図が不明瞭だったりすると、半年後に修正が必要になった際、開発担当者が変わっていた場合、大きな手戻りが発生する。また、AIツールのバージョンアップや仕様変更により、過去に生成されたコードとの互換性が失われるリスクも存在する。初期開発のスピードを重視するあまり、長期的な運用コストが膨らんでしまっては本末転倒である。真のDX推進には、目先の効率化だけでなく、持続可能な開発体制の構築が不可欠なのである。

適切な見極め

ローコード開発におけるAI活用は、すべてのケースで必須というわけではない。定型的な画面開発や単純なCRUD操作など、パターン化された開発にはAIが有効だが、複雑なビジネスロジックや高度なセキュリティが要求される領域では、人間による丁寧な設計と実装が重要である。重要なのは、プロジェクトの性質、チームのスキルレベル、長期的な保守計画を考慮した上で、AIを活用すべき領域と従来手法を維持すべき領域を明確に区分することである。段階的にAIツールを導入し、効果を検証しながら適用範囲を拡大していく慎重なアプローチが、失敗リスクを最小限に抑え、真の生産性向上につながる。

まとめ

ローコード開発へのAI導入は、万能の解決策ではなく、適材適所で活用すべきツールである。コード生成の質、要件定義の難しさ、保守性の課題を十分に理解した上で、自社の開発体制に合った形でAIを取り入れることが成功の鍵となる。短期的な効率化だけでなく、長期的な運用まで見据えた戦略的な判断が求められている。

続きを見る >

IoT業務改善が進まない理由

IoT導入の落とし穴

製造業や物流業を中心に、IoTセンサーやデバイスの導入が加速している。設備の稼働状況、温度・湿度、位置情報など、あらゆるデータがリアルタイムで収集できる時代になった。しかし、IoTを導入したものの「期待した業務改善効果が得られない」という声が多く聞かれる。データは確かに取得できているのに、なぜ業務改善に結びつかないのか。この問題は多くの企業が直面している共通の課題である。

データの墓場化

IoTデバイスから送られてくるデータは、サーバーやクラウドに蓄積されていく。しかし、その膨大なデータを見ても「何をすればいいのか分からない」という状況に陥る企業が少なくない。ダッシュボードには数値やグラフが表示されているものの、それを見て具体的なアクションを起こせる人材がいない。結果として、高額な投資をしたIoTシステムが「データ収集マシン」で終わってしまい、経営層からは「費用対効果が見えない」と指摘される悪循環に陥る。

失敗の典型パターン

活用が進まない企業には明確な共通点がある。第一に「導入目的が曖昧」なケースだ。「とりあえずIoTを入れてみよう」という姿勢では、取得すべきデータの種類も不明確になる。第二に「データ分析のスキル不足」である。統計知識やデータ分析ツールの使い方を理解している人材がいなければ、データから意味のある洞察は得られない。第三に「業務プロセスとの連携不足」だ。データ分析の結果を実際の業務改善アクションに落とし込む仕組みがなければ、分析は絵に描いた餅で終わる。これらの問題は技術以前の、組織体制や戦略の問題なのである。

正しい活用ステップ

IoTを真に業務改善につなげるには、段階的なアプローチが必要だ。まず「解決したい課題」を明確にし、その課題解決に必要なデータだけを取得する設計から始める。次に、データを見える化するだけでなく、「どの数値がどうなったら、誰が何をするか」というアクションルールを事前に設定する。さらに、現場担当者がデータを日常的に確認し、判断できるよう、シンプルなダッシュボードと教育体制を整えることが重要だ。IoT活用は技術導入ではなく、業務プロセス改革として捉え、全社的な取り組みとして推進することで初めて成果が生まれる。

まとめ

IoTで業務改善が進まない企業の共通点は、データ収集が目的化し、活用のための戦略・スキル・体制が不足している点である。導入前の課題設定、データ分析人材の育成、業務プロセスへの組み込みという3つの要素を整えることで、IoTは真の業務改善ツールになる。技術導入だけでなく、組織全体での活用文化の醸成が成功の鍵である。

続きを見る >