要件定義のアプローチ

要件定義の基本

すべてをシステムで解決してしまおうとする要件定義には注意が必要である。システムの成功の可否は要件定義にかかっていると言っても過言ではない。しかし、十分に要件定義の時間を使ったにも関わらず、ITプロジェクトが失敗することがある。

規模別の要件定義

システム構築の規模によって、要件定義の粒度が変わる。小さなITプロジェクトの場合は要件定義をせずにプロトタイプを作りながらシステム構築を進めるといった方法がある。これをアジャイル開発、プロトタイプ開発と呼ぶ。

要件定義の本質

要件定義の粒度は時間を掛ければ細かくなるわけではない。ユーザー側でも要件定義を進めるにつれて、想定している機能の矛盾点が出てくることがある。この矛盾点を解消していくこと自体を要件定義としてはならない。要件定義はあくまで本質的なコアとなる部分から膨らませることが重要である。

対話型要件定義

要件定義フェーズで失敗するパターンは、ユーザー側との対話ではなく、システム会社側がヒアリングに徹する場合である。ユーザー側はITを利用してどのようなことができるかを知らない可能性が高いため、システム専門家がそれを鵜呑みにした仕様で要件を固めてしまうと、製造工程で無駄な工数が発生し予算をオーバーしてしまうことがある。

まとめ

本質的な要件をコミュニケーションによって、はっきりさせていく作業こそが要件定義と言えるのである。さまざまな視点から何度も繰り返し要件をなぞることで粒度が落ちていき、適切な要件定義書となる。何でもかんでもシステム化せず、オペレーションとの関係性を見合わせながら進めることが望ましい。

関連記事

野良アプリは排除すべきか?

「便利」の裏にある現場IT

シャドーITとは、企業の情報システム部門が認知・管理していない状態で、現場の判断によって導入・利用されるIT資源を指す。具体例としては、LINEやGoogleドライブ、Excelマクロなど、日常業務の中で自然発生的に使われるツールが挙げられる。これは企業としての統制外にある一方、現場の即応性や利便性を追求した工夫の結果でもあり、単なるルール違反と一括りにはできない。ゆえに、これを「排除すべき野良アプリ」として扱うことが妥当かどうか、慎重な見極めが必要である。

IT部門を飛び越える理由

現場がシャドーITを使う背景には、既存システムの使い勝手の悪さや、IT部門の対応の遅さといった事情がある。業務は待ってくれない以上、迅速な判断や情報共有のために、現場が自ら使いやすいツールを選ぶのは自然な流れである。たとえば、社内の共有フォルダではなくGoogleドライブを使ったり、煩雑な申請フローをExcelマクロで簡素化したりといった工夫は、業務効率の向上に寄与している。現場がスピードと柔軟性を求める限り、IT部門の枠組みに収まらないツール活用は今後も続くはずだ。

シャドーITのリスク

便利な一方で、シャドーITには深刻なリスクも存在する。まず、セキュリティが担保されていないツールの使用は、情報漏洩やマルウェア感染といったリスクを高める。また、IT部門の管理外にあるため、データの一元管理ができず、連携の取れないシステムが乱立することで、かえって非効率になることもある。最悪の場合、コンプライアンス違反や内部統制の崩壊を引き起こす可能性も否定できない。利便性の裏には常にリスクが潜んでいるという現実を直視する必要がある。

市民開発と再定義

ただし、シャドーITの存在は、現場が自らITを活用しようとする前向きな姿勢の表れでもある。近年ではDXの進展に伴い、「市民開発」や「ローコード開発」など、現場主導のIT活用が注目を集めている。従来は否定されてきたシャドーITも、企業変革の一端を担う可能性を秘めている。IT部門がすべてを統制するのではなく、現場と協力しつつガバナンスを効かせる視点に立てば、シャドーITは排除すべき“野良”ではなく、むしろ育てるべき“創造”として再定義できるはずだ。

まとめ

現場の柔軟性と全社最適を両立させるには、両者を理解した経営の舵取りが欠かせない。「排除」ではなく「共存」の設計に踏み出すことこそが、企業のDXを推進するための鍵となる。

続きを見る >

生成AI失敗の3要因

期待と現実の乖離

生成AIを導入したものの、思うような成果が出ずに悩む企業が増えている。「話題だから」「競合が使っているから」という理由で導入したケースでは、現場から「結局使えない」という声が上がることも珍しくない。実は、生成AIで成果が出ない原因の多くは、ツール自体の問題ではなく、導入プロセスや運用体制に潜んでいる。本記事では、成果が出ない3つの主要因を解説する。

曖昧なゴール設定

成果が出ない最大の原因は、導入目的が不明確なことである。「業務効率化」という漠然とした目標では、具体的に何を効率化するのか、どの程度の改善を目指すのかが見えない。結果として、現場は何にAIを使えばいいかわからず、試しに使ってみても効果を実感できないまま放置される。成功している企業は「議事録作成時間を50%削減」「問い合わせ対応の一次回答を自動化」など、測定可能な目標を設定している。目的が明確であれば、適切なツール選定も、効果測定も、改善サイクルも回しやすくなる。

教育不足の弊害

二つ目の原因は、従業員への教育不足である。生成AIは万能ではなく、適切なプロンプト設計や出力結果の検証スキルが求められる。しかし多くの企業では「ツールを入れれば自然と使われる」と考え、十分な研修を実施していない。その結果、一度試して期待外れの回答が返ってきた社員は「使えない」と判断し、二度と触らなくなる。三つ目の原因は、業務との不適合である。定型的な作業や創造的な文章生成には強みを発揮するが、高度な専門判断や最新情報が必要な業務には向かない。自社の業務特性を分析せずに導入すると、AIの強みを活かせない領域で無理に使おうとして失敗する。

成功の3条件

生成AIで成果を出すためには、三つのポイントを押さえる必要がある。第一に、具体的で測定可能な導入目的を設定すること。第二に、継続的な教育プログラムを通じて社員のAIリテラシーを高めること。第三に、自社業務を棚卸しし、AIが得意な領域と苦手な領域を見極めたうえで適用範囲を決めることである。これらは当たり前のように聞こえるが、実際に徹底できている企業は少数派だ。逆に言えば、この基本を押さえるだけで、競合との差別化が可能になる。生成AIは正しく活用すれば強力な武器となるが、準備なき導入は失敗の元である。

まとめ

生成AIで成果が出ない原因は、目的の不明確さ、教育不足、業務との不適合の三点に集約される。これらはいずれもツール導入前の準備段階で解決できる課題だ。成功の鍵は、明確な目標設定、継続的な人材育成、そして業務特性に応じた適切な活用領域の選定にある。基本を徹底することが、AI活用の成否を分けるのである。

続きを見る >

オフショア開発における契約形態の選択と、重要なポイント

オフショア開発には、受託開発、ラボ開発、そして折衷型の3つの契約形態が存在します。それぞれの契約形態には特徴と課題がありますが、最終的にここで「折衷型」と述べているものに集約していく傾向があります。

受託開発契約とその特徴

受託開発契約は、成果物の納品を約束する契約形態です。この形態では、事前に成果物の定義を明確にし、それに基づいて開発を進めます。受託開発契約はソフトウェア開発においてシンプルな形態と言えますが、成果物の定義を明確にすることは容易ではありません。実際の開発作業では、概念上の定義と現実の制約との間で調整が必要となる場合があります。

ラボ開発契約とその特徴

ラボ開発契約は、クライアントが直接開発者に対して指示を出す契約形態です。クライアントは開発者を拘束し、その時間を購入します。この形態は、日本のSES契約に近いものですが、ラボ開発では開発者は非常駐となります。時間単位で開発者の貢献を購入するため、時間の品質によって成果物の品質が保証されるわけではありません。開発者によって同じ時間内でも成果物の差が生じることがあります。

折衷型契約の意義とその特徴

折衷型契約は受託開発契約とラボ開発契約の折衷案として採用されます。この契約形態では、成果物の定義を柔軟にし、一定の作業時間も確保しながら、基本的にボトムアップ型で開発を進めていきます。オフショア開発においては、ビジネスモデルやクライアントの要求を理解し、中核的な開発人材(例えば、ブリッジエンジニア)を確保することが重要です。中核的な人材はクライアントのビジネスについて深い洞察を持ち、長期的な関係を築くことができます。このような中核人材をラボ契約で時間拘束的に確保し、プロジェクトが大型化したときはスポットで追加の受託契約を行い、人を追加で確保するというものです。

折衷案に収斂していく実際のプロジェクト

受託開発としてスタートしたプロジェクトでも、ラボ開発としてスタートしたプロジェクトでも、ベトナムでのオフショア開発が成功し長く続いている案件は、最終的に折衷案に収斂していく傾向があるようです。多くの場合は海外開発拠点は、日本の開発プロジェクトの外付け工場という位置づけになりますので、クライアントのビジネスをよく知った開発者を確保しつつスケーラビリティを確保するという両方が求められることとなり、このような形に落ち着くのでしょう。

もしこの形をゴールとするのならば、下記の2点に注目するのが良いでしょう。

(a) 長期契約が必要なこと:クライアントのビジネスモデルや独自の用語を理解し、本当に重要な要素を把握するためには時間が必要です。クライアントのビジネスに寄り添いながら開発を行うためには、最低でも1年以上の長期契約が必要です。

(b) ブリッジエンジニアを始めとする中核的人材の確保が大切であること:中核的な開発人材は、クライアントのビジネスをよく理解し、ビジネスの要件に応じて開発を進めることができる人材です。彼らは長期的なパートナーシップを築き、クライアントのビジネス成果に貢献します。そのため、オフショア開発においては、ブリッジエンジニアなどの中核的な人材の確保が極めて重要です。

オフショア開発においては、契約形態の選択とビジネス戦略の統合が成功の鍵となります。ビジネスの長期的な視点と中核的な人材の確保を重視することで、効果的なオフショア開発を実現することができるでしょう。

続きを見る >