要件定義のアプローチ

要件定義の基本

すべてをシステムで解決してしまおうとする要件定義には注意が必要である。システムの成功の可否は要件定義にかかっていると言っても過言ではない。しかし、十分に要件定義の時間を使ったにも関わらず、ITプロジェクトが失敗することがある。

規模別の要件定義

システム構築の規模によって、要件定義の粒度が変わる。小さなITプロジェクトの場合は要件定義をせずにプロトタイプを作りながらシステム構築を進めるといった方法がある。これをアジャイル開発、プロトタイプ開発と呼ぶ。

要件定義の本質

要件定義の粒度は時間を掛ければ細かくなるわけではない。ユーザー側でも要件定義を進めるにつれて、想定している機能の矛盾点が出てくることがある。この矛盾点を解消していくこと自体を要件定義としてはならない。要件定義はあくまで本質的なコアとなる部分から膨らませることが重要である。

対話型要件定義

要件定義フェーズで失敗するパターンは、ユーザー側との対話ではなく、システム会社側がヒアリングに徹する場合である。ユーザー側はITを利用してどのようなことができるかを知らない可能性が高いため、システム専門家がそれを鵜呑みにした仕様で要件を固めてしまうと、製造工程で無駄な工数が発生し予算をオーバーしてしまうことがある。

まとめ

本質的な要件をコミュニケーションによって、はっきりさせていく作業こそが要件定義と言えるのである。さまざまな視点から何度も繰り返し要件をなぞることで粒度が落ちていき、適切な要件定義書となる。何でもかんでもシステム化せず、オペレーションとの関係性を見合わせながら進めることが望ましい。

関連記事

DX伴走支援の成否 –丸投げと真の伴走の違い–

伴走支援の落とし穴

多くの企業がDX推進のために「伴走支援」を謳うコンサルティング会社に依頼するが、期待した成果が得られず終わるケースが後を絶たない。その原因の多くは、「伴走」という名目でありながら、実態は「丸投げ」になっているためだ。発注側も受注側も、伴走支援の本質を理解しないまま契約を結び、プロジェクトが進むにつれて認識のずれが明確になる。結果として、導入したシステムが活用されない、現場が混乱する、投資対効果が見えないという事態に陥る。

丸投げ支援の特徴

失敗する「丸投げ型支援」には明確な特徴がある。まず、コンサルタントが一方的に最新ツールやシステムを提案し、現場の業務フローや課題を十分にヒアリングしない。次に、導入後の運用は企業側に任せきりで、定期的なフォローアップがない。さらに、従業員への教育や研修が形式的で、実際の業務に即した内容になっていないのだ。このような支援では、高額なシステムを導入しても現場に定着せず、結局は以前の方法に戻ってしまう。経営層だけが満足して終わる「見せかけのDX」になってしまうのである。

真の伴走支援とは

では、真の「伴走支援」とは何か。第一に、企業の現状を深く理解することから始まる。業務フロー、従業員のスキルレベル、社内の文化まで把握したうえで、最適なDX戦略を設計する。第二に、導入プロセス全体に伴走者が関与し、現場の声を拾いながら柔軟に軌道修正する。システムを導入して終わりではなく、定着するまで継続的にサポートするのだ。第三に、従業員が自走できるよう、実践的な教育を提供する。マニュアルを渡すだけでなく、実際の業務シーンを想定したトレーニングを行い、疑問にその場で答える。つまり、企業と同じ目線で課題に向き合い、成果が出るまで責任を持つのが真の伴走支援である。

支援会社の選び方

伴走支援を選ぶ際は、いくつかの判断基準がある。まず、過去の実績と具体的な成果指標を確認すべきだ。単なる導入事例ではなく、導入後の定着率や業務効率の改善率などの数値データを提示できるかが重要である。次に、初回のヒアリングで、どれだけ深く現場の課題を掘り下げようとするかを見極める。表面的な質問だけで終わる会社は要注意だ。さらに、契約内容に導入後のサポート期間や具体的な支援内容が明記されているかを確認する必要がある。曖昧な表現ではなく、何を、いつまで、どのように支援するのかが明確であることが、真の伴走支援を提供する会社の証である。

まとめ

DX伴走支援の成否は、「丸投げ」か「真の伴走」かで決まる。表面的なシステム導入ではなく、現場に寄り添い、定着まで責任を持つパートナーを選ぶことが、DX成功への第一歩だ。明確な成果指標と継続的なサポート体制を持つ支援会社と組むことで、投資を確実に成果に変えることができる。

続きを見る >

QCDの死角

失敗の正体

システムの失敗は見えないことがある。ブラックボックスであるがゆえに隠せてしまうからである。失敗かどうかの線引きができないところがシステム構築プロジェクトの難しいところである。

エンジニアの真実

もしかしたら、エンジニアが都合の悪いことは隠していることがあるかもしれない。しかし、決めつけてしまうとエンジニアはへそを曲げてしまう可能性がある。隠しているつもりはなくても隠れていることもある。

成功の境界

失敗の線引きは、納期が遅れることであろうか。バグが多いということであろうか。実は、状況によって一概に言えないのである。QCDという言葉があるが、品質と費用と納期のバランスを上手にとったとしても成功か失敗か、すぐにはわからないのがシステムという無形物である。

コスパの本質

コスパという言葉があるが、かけるコストに対して、どれだけのパフォーマンスが出せるかが問題となる。システム開発では、コストからやりたいことを計算するのではなく、やりたいことを明確にしたうえで、コスト内でリッチ度合いを調節することが重要である。

まとめ

システム開発においては、失敗が見えにくいため、失敗しないように見えるのかもしれない。失敗しないことは、成功であるということでもない。時間が経つにつれて失敗を感じることもあり得るのである。

続きを見る >

デジタル化の誤解:効率化の落とし穴

デジタル化は効率化を保証しない

デジタル化と聞くと、多くの人が効率化を期待する。しかし、たとえばFAXで受け取った紙の受注をOCR(文字認識)でデジタルデータ化し、データベースに保存しても、それは単なるデジタル化に過ぎない。デジタル化を行うだけでは本質的な効率向上は望めず、業務フローの見直しがなければ効果は限定的だ。

非効率なフローをそのままデジタル化するリスク

最も大きな問題は、業務フローを見直さずにデジタル化を行うことだ。従来の手作業のフローをそのままデジタル化すれば、かえって作業が煩雑化し、時間がかかることもある。特にITに疎い権限者が意思決定を行う場合、このような失敗はよく見られる。「デジタル化=効率化」と誤解し、実際には逆効果となるケースも少なくない。

俯瞰できないシステム担当者の問題

システム担当者やシステム会社が、俯瞰的な視点を持たない場合も問題だ。業務フローを把握せず、指示通りにデジタル化を進めれば、非効率なシステムが出来上がる。ユーザー部門は「IT化で逆に効率が悪くなった」と感じ、最悪の場合、システムが欠陥品だと誤解されることもある。業務の流れを把握し、適切にデジタル化を進めることが必要だ。

生成AI導入の失敗例

生成AIの導入に関する相談も増えているが、その多くは「期待通りに動かない」という内容だ。その原因は、多くの場合、AIが本来必要ない箇所に導入されていることだ。たとえば、ただのデータ管理であれば、生成AIではなくRDB(リレーショナルデータベース)のほうが合理的だ。効率を上げるには、AIの利用が本当に適切かを見極める判断力が必要だ。

まとめ

「ITが分からないから任せる」という姿勢はリスクが高い。ITを知らない人がIT化を進めるのは、決算書を読めないのに経営をするのと同じだ。業務フローを理解し、技術を正しく活用するには横断的な視点と経験が不可欠だ。

続きを見る >