要件定義のアプローチ

要件定義の基本

すべてをシステムで解決してしまおうとする要件定義には注意が必要である。システムの成功の可否は要件定義にかかっていると言っても過言ではない。しかし、十分に要件定義の時間を使ったにも関わらず、ITプロジェクトが失敗することがある。

規模別の要件定義

システム構築の規模によって、要件定義の粒度が変わる。小さなITプロジェクトの場合は要件定義をせずにプロトタイプを作りながらシステム構築を進めるといった方法がある。これをアジャイル開発、プロトタイプ開発と呼ぶ。

要件定義の本質

要件定義の粒度は時間を掛ければ細かくなるわけではない。ユーザー側でも要件定義を進めるにつれて、想定している機能の矛盾点が出てくることがある。この矛盾点を解消していくこと自体を要件定義としてはならない。要件定義はあくまで本質的なコアとなる部分から膨らませることが重要である。

対話型要件定義

要件定義フェーズで失敗するパターンは、ユーザー側との対話ではなく、システム会社側がヒアリングに徹する場合である。ユーザー側はITを利用してどのようなことができるかを知らない可能性が高いため、システム専門家がそれを鵜呑みにした仕様で要件を固めてしまうと、製造工程で無駄な工数が発生し予算をオーバーしてしまうことがある。

まとめ

本質的な要件をコミュニケーションによって、はっきりさせていく作業こそが要件定義と言えるのである。さまざまな視点から何度も繰り返し要件をなぞることで粒度が落ちていき、適切な要件定義書となる。何でもかんでもシステム化せず、オペレーションとの関係性を見合わせながら進めることが望ましい。

関連記事

予算ブレの原因

開発の変動要因

システム開発は長期にわたることが多く、また未来の不確実性の中で予算を策定しなくてはいけないことがある。セキュリティーをはじめ動作環境の変化や人員の欠如、予期していなかった仕様の発覚などが原因だ。

目標変化と予算

進捗率は目的地が明確に設定されていれば数字を負うことで予算達成率を算出することができる。しかし、目的地が近い遠いのは無しではなく、根本的な目的地がなくなったり、複数になったりすることがシステム予算の策定の難しいところである。

計画型開発法

システムに未来を見ることができればブレない、見えないことをすべて調査の上で着手できれば確実な予算と実行が可能である。進捗率の報告が可能になる。フォーターフォールモデルなのでコストがかかることと時間がかかることの覚悟が必要だ。途中での方向修正は原則できない。

柔軟な開発手法

逆に低予算で早く導入するなら、見えにくくなるデメリットがある。状況によって対応を素早く変化させる必要があるため進捗率を算出しにくい。アジャイル開発と呼ばれるものであり、社内開発であることが理想である。途中で出てくる条件に対しても柔軟に方向性を変化させることが可能である。

まとめ

アジャイル開発で予算を立てるときは、1.5-2.5倍くらいを目安に余裕を持って設定することを推奨する。

続きを見る >

AIで変わるシステム開発

開発現場の変化

近年、システム開発の現場では深刻な人材不足と納期の短縮化が大きな課題となっている。従来の手法では限界を感じている企業も多いのではないだろうか。そんな中、AI技術の急速な進化により、開発工程に革新的な変化が起きている。コード生成からテスト自動化まで、AIが開発者をサポートする時代が到来した。本記事では、AI活用によってシステム開発がどのように変わるのか、その未来像を探っていく。

日々の開発業務

実際の開発現場では、AIはどのように活用されているのだろうか。要件定義フェーズでは、AIが過去のプロジェクトデータを分析し、最適な機能提案や工数見積もりをサポートする。コーディング段階では、GitHub CopilotやChatGPTなどのAIツールが、リアルタイムでコード補完や不具合検出を行い、開発速度を大幅に向上させている。テスト工程においても、AIが自動的にテストケースを生成し、バグの早期発見を実現する。これらの活用により、開発期間の30%削減や品質向上を達成した企業も増えている。

導入の注意点

しかし、AIの導入には注意すべき点もある。最も大きな課題は、生成されたコードの品質管理である。AIは便利だが、時として不正確なコードや非効率な実装を提案することがある。そのため、開発者にはAI出力を適切に評価できるスキルが求められる。また、セキュリティ面での懸念も無視できない。機密情報を含むコードをAIに学習させることのリスクや、著作権の問題など、法的な側面も考慮が必要である。さらに、既存の開発プロセスとAIツールをどう統合するか、組織全体での運用ルール策定も重要な課題となっている。成功の鍵は、適切なガイドライン設定と継続的な教育にある。

求められるスキル

AI活用が進む中で、開発者の役割も大きく変化している。単純なコーディング作業はAIに任せ、開発者はより創造的で高度な判断を要する業務に集中できるようになる。つまり、システム全体のアーキテクチャ設計、ビジネス要件の深い理解、そしてAIが生成した成果物を評価・改善する能力が重要になるのである。AIは強力なツールだが、あくまで人間の判断を補助するものである。技術トレンドを常に学び、AIとの協働方法を模索し続ける姿勢が、これからの開発者には不可欠である。AI時代だからこそ、人間ならではの創造性と批判的思考力が、より一層価値を持つようになるだろう。

まとめ

AI技術の進化により、システム開発は新たな段階に入った。開発速度の向上や品質改善といった明確なメリットがある一方で、適切な導入戦略と運用ルールが成功の鍵となる。重要なのは、AIを単なる自動化ツールとして捉えるのではなく、人間の能力を拡張するパートナーとして活用することである。技術と人材の両面からバランスよく取り組むことで、開発工程の真の革新が実現できるだろう。

続きを見る >

オオカミ少年化の弊害

SE常駐の負連鎖

システム開発会社側の立場からすると、時間ばかり取るよくないクライアントはできるだけ減らさないと、他の優良クライアントに迷惑がかかる。特に横にいてくれないと進めることができないというニーズが、SE常駐の常態化してしまっている要因である。

常駐要請の心理

SEへの安心感の欠如が常駐しないといけない理由のひとつである。隣にいれば、何かあった時にすぐに指示が出せる。たとえば、サーバが止まったときにすぐに復旧させることが可能である。

対症療法の克服

隣にSEを常駐させて対応できてしまうがゆえに対処療法になってしまいがちである。本来であれば、サーバが止まらないようにすべきであり、リカバリのプランがしっかりと計画されていることが理想である。

脱属人化の施策

SE側も、すぐに復旧させられるからといった怠慢により、事前に問題や対策を考えておくといった準備を怠ってしまう。そう考えると、発注側のITリテラシーも非常に重要である。属人化しないように仕組化するにはどうするかを常に整理する意識を持つことが大切である。

まとめ

発注側は感情だけでプロジェクトを遂行すると、何かあった時に何でもSEを急かしてしまう。これによって、発注側はオオカミ少年化してしまうため、本当に急がないといけないときに対応が遅れてしまうのである。

続きを見る >