要件定義のアプローチ

要件定義の基本

すべてをシステムで解決してしまおうとする要件定義には注意が必要である。システムの成功の可否は要件定義にかかっていると言っても過言ではない。しかし、十分に要件定義の時間を使ったにも関わらず、ITプロジェクトが失敗することがある。

規模別の要件定義

システム構築の規模によって、要件定義の粒度が変わる。小さなITプロジェクトの場合は要件定義をせずにプロトタイプを作りながらシステム構築を進めるといった方法がある。これをアジャイル開発、プロトタイプ開発と呼ぶ。

要件定義の本質

要件定義の粒度は時間を掛ければ細かくなるわけではない。ユーザー側でも要件定義を進めるにつれて、想定している機能の矛盾点が出てくることがある。この矛盾点を解消していくこと自体を要件定義としてはならない。要件定義はあくまで本質的なコアとなる部分から膨らませることが重要である。

対話型要件定義

要件定義フェーズで失敗するパターンは、ユーザー側との対話ではなく、システム会社側がヒアリングに徹する場合である。ユーザー側はITを利用してどのようなことができるかを知らない可能性が高いため、システム専門家がそれを鵜呑みにした仕様で要件を固めてしまうと、製造工程で無駄な工数が発生し予算をオーバーしてしまうことがある。

まとめ

本質的な要件をコミュニケーションによって、はっきりさせていく作業こそが要件定義と言えるのである。さまざまな視点から何度も繰り返し要件をなぞることで粒度が落ちていき、適切な要件定義書となる。何でもかんでもシステム化せず、オペレーションとの関係性を見合わせながら進めることが望ましい。

関連記事

伴走型開発で仕様変更地獄を脱出

炎上の元凶

システム開発プロジェクトにおいて「仕様変更地獄」は最も深刻な問題の一つである。開発が進むにつれて次々と変更依頼が発生し、スケジュールは遅延、コストは膨張、開発チームの疲弊が進む。こうした状況に陥った企業では、プロジェクト自体が頓挫するケースも少なくない。特に従来型の開発手法では、仕様を固めてから開発に着手するため、後から変更が入ると大きな手戻りが発生する。ビジネス環境の変化が激しい現代において、この開発スタイルは限界を迎えているのだ。

仕様変更の理由

仕様変更が頻発する背景には、いくつかの構造的な問題がある。第一に、プロジェクト開始時点で業務要件を完璧に定義することは実質的に不可能だという現実である。現場の担当者も、システムが動く姿を見るまで本当に必要な機能が見えない。第二に、開発期間中にビジネス環境や競合状況が変化し、当初の要件では不十分になることがある。第三に、発注側と開発側のコミュニケーション不足により、認識のズレが後から発覚するケースである。これらの問題は、従来の「要件定義→設計→開発」という一方通行の開発プロセスでは解決できない。

伴走型開発の効果

こうした課題を解決するのが「伴走型開発支援」というアプローチである。これは、開発ベンダーが単なる請負業者ではなく、ビジネスパートナーとして顧客企業に寄り添い、プロジェクト全体を通じて継続的に支援する手法だ。具体的には、小さな単位で機能を実装しては確認するアジャイル的な開発サイクルを回し、仕様変更を前提としたプロジェクト管理を行う。重要なのは、変更を「悪」ではなく「ビジネス価値の最大化」として捉え直すことである。定期的なレビューで優先順位を見直し、本当に必要な機能に開発リソースを集中させる。こうすることで、限られた予算と期間の中で最大の成果を生み出せるのだ。

成功の3つの鍵

伴走型開発支援を成功させるには3つのポイントがある。第一に、発注側と開発側が対等なパートナーシップを築き、透明性の高いコミュニケーションを維持することである。進捗状況や課題を隠さず共有し、一緒に解決策を考える姿勢が不可欠だ。第二に、MVP(実用最小限の製品)の考え方で、コア機能から段階的に実装していくことである。すべてを一度に完璧にしようとせず、ユーザーフィードバックを得ながら改善を重ねる。第三に、変更管理のルールを明確にし、影響範囲とコストを可視化することである。無秩序な変更を防ぎながら、本当に価値のある変更は柔軟に取り入れる。このバランスこそが成功の鍵となる。

まとめ

仕様変更地獄から抜け出すには、開発手法そのものを見直す必要がある。伴走型開発支援は、変化を受け入れながらプロジェクトを着実に前進させる現代的なアプローチである。単なる技術提供ではなく、ビジネスゴールの実現に向けた戦略的パートナーシップが、これからのシステム開発には求められているのだ。

続きを見る >

予算ブレの原因

開発の変動要因

システム開発は長期にわたることが多く、また未来の不確実性の中で予算を策定しなくてはいけないことがある。セキュリティーをはじめ動作環境の変化や人員の欠如、予期していなかった仕様の発覚などが原因だ。

目標変化と予算

進捗率は目的地が明確に設定されていれば数字を負うことで予算達成率を算出することができる。しかし、目的地が近い遠いのは無しではなく、根本的な目的地がなくなったり、複数になったりすることがシステム予算の策定の難しいところである。

計画型開発法

システムに未来を見ることができればブレない、見えないことをすべて調査の上で着手できれば確実な予算と実行が可能である。進捗率の報告が可能になる。フォーターフォールモデルなのでコストがかかることと時間がかかることの覚悟が必要だ。途中での方向修正は原則できない。

柔軟な開発手法

逆に低予算で早く導入するなら、見えにくくなるデメリットがある。状況によって対応を素早く変化させる必要があるため進捗率を算出しにくい。アジャイル開発と呼ばれるものであり、社内開発であることが理想である。途中で出てくる条件に対しても柔軟に方向性を変化させることが可能である。

まとめ

アジャイル開発で予算を立てるときは、1.5-2.5倍くらいを目安に余裕を持って設定することを推奨する。

続きを見る >

AIで何ができるのか

AI vs 人間

AIは人間を超えるのか?などの質問をされることがよくある。シンギュラリティと呼ばれているが、超える超えないの単一線上で比較できるものではないと考える。たとえば、計算の速さだけでいうと人間よりも、はるかに早いと言える。

AI導入の両面性

とにかく労働人口の減少によって、機械化やAI化が急がれていると思う。すでに、画像作成や文章作成などは置き換わっている事例も多くみられるようになった。そんな中で、よくあるのが「AIで何かできませんか?」という問い合わせである。

AI時代のDX

DXという概念にも通ずる話だが、デジタル化するだけでは、いわゆるデジタル変革にはならない。ペーパーレス化ってやつだ。同じように、AIを使うことを目的としてしまうと業務に対して便益がない場合も多いようだ。したがって、AIを利用するということをDXと定義するのであれば、日常業務を整理して、どこをAIに任せるのかを検討することが大切である。

AI活用の極意

AIにも得手不得手があり、計算はもちろん得意だが、質問の仕方や指示の仕方で活用レベルは大きく変わる。プロンプトと呼ばれるものはコピーして使えるが、AIを活用しきろうとするならば、自分でプロンプトを考えれる必要がある。つまり、現時点では賢いAIなのではなく、使う側が上手に使わないとならない。

まとめ

AIの使いどころについて、多くは無理やり使おうとするため、AIを活用する場面でないことも多くある。また、ユーザー企業に関わらずシステム会社でもAIの活用は進んでおり、画像の生成やプログラミングの一部はすでに人間が行わなくてもよい段階にある。これから先もこれは加速することだろう。

続きを見る >