思考と決断のPM力

PMの真価

スキルシート上にあるPMというのは、どういった開発言語や開発環境などを使ってきたかという内容であることが多く、SEの延長という意味合いが強く残っている。もし、期待するポジションが発想力や提案力にあるとすれば、姿勢をみることが大切となる。

従順の呪縛

就職氷河期と呼ばれる世代より上の年齢層では、常に従うことを幼少期から叩き込まれていると考えられる。日本では「禁止」か「許可」かを常に意識しながら仕事をしており、「許可されるまでは禁止されている」と考えているのではないかと推察される。

失敗からの成長

正しいか、間違っているか、の判断基準しか持ち合わせていない場合、何か問題が発生したときに時間を遡ってどこで判断を間違えたのかを追求する。それは大切なことであるが、実際のプロジェクトでは誤ったことを反省しつつ修正しながら進むことが大切である。

判断力の真髄

エンジニア出身のPM(開発プロジェクトのPM)だと、禁止か許可かというデジタルのような見方をしている人もいる。特に今日のシステムに関するプロジェクトでは、ゼロかイチだけでは判断できないような、ウエットでアナログな状況判断が必要となる。

まとめ

たとえ能力の高いPMだったとしても、仕事になると発想することや作ることの楽しみより、ミスによる懲罰を恐れたりするために、無難で当たり障りのない判断をしがちである。システムに関するプロジェクトがなかなか前へ進まない理由でもある。

関連記事

IoT業務改善が進まない理由

IoT導入の落とし穴

製造業や物流業を中心に、IoTセンサーやデバイスの導入が加速している。設備の稼働状況、温度・湿度、位置情報など、あらゆるデータがリアルタイムで収集できる時代になった。しかし、IoTを導入したものの「期待した業務改善効果が得られない」という声が多く聞かれる。データは確かに取得できているのに、なぜ業務改善に結びつかないのか。この問題は多くの企業が直面している共通の課題である。

データの墓場化

IoTデバイスから送られてくるデータは、サーバーやクラウドに蓄積されていく。しかし、その膨大なデータを見ても「何をすればいいのか分からない」という状況に陥る企業が少なくない。ダッシュボードには数値やグラフが表示されているものの、それを見て具体的なアクションを起こせる人材がいない。結果として、高額な投資をしたIoTシステムが「データ収集マシン」で終わってしまい、経営層からは「費用対効果が見えない」と指摘される悪循環に陥る。

失敗の典型パターン

活用が進まない企業には明確な共通点がある。第一に「導入目的が曖昧」なケースだ。「とりあえずIoTを入れてみよう」という姿勢では、取得すべきデータの種類も不明確になる。第二に「データ分析のスキル不足」である。統計知識やデータ分析ツールの使い方を理解している人材がいなければ、データから意味のある洞察は得られない。第三に「業務プロセスとの連携不足」だ。データ分析の結果を実際の業務改善アクションに落とし込む仕組みがなければ、分析は絵に描いた餅で終わる。これらの問題は技術以前の、組織体制や戦略の問題なのである。

正しい活用ステップ

IoTを真に業務改善につなげるには、段階的なアプローチが必要だ。まず「解決したい課題」を明確にし、その課題解決に必要なデータだけを取得する設計から始める。次に、データを見える化するだけでなく、「どの数値がどうなったら、誰が何をするか」というアクションルールを事前に設定する。さらに、現場担当者がデータを日常的に確認し、判断できるよう、シンプルなダッシュボードと教育体制を整えることが重要だ。IoT活用は技術導入ではなく、業務プロセス改革として捉え、全社的な取り組みとして推進することで初めて成果が生まれる。

まとめ

IoTで業務改善が進まない企業の共通点は、データ収集が目的化し、活用のための戦略・スキル・体制が不足している点である。導入前の課題設定、データ分析人材の育成、業務プロセスへの組み込みという3つの要素を整えることで、IoTは真の業務改善ツールになる。技術導入だけでなく、組織全体での活用文化の醸成が成功の鍵である。

続きを見る >

DX失敗企業の共通点

DX推進の落とし穴

デジタルトランスフォーメーション(DX)に取り組む企業が増える一方で、期待した成果を得られずに頓挫するケースが後を絶たない。経済産業省の調査でも、DXに成功したと実感している企業はわずか数パーセントに留まっている。なぜ多くの企業がDXで失敗してしまうのか。本記事では、失敗する会社に共通する特徴を分析し、成功へ導くための視点を紹介する。

失敗企業の共通点

DXが失敗する会社には、いくつかの共通点がある。第一に「目的の不明確さ」である。ツール導入そのものが目的化し、何を解決したいのかが曖昧なまま進めてしまう。第二に「経営層の関与不足」が挙げられる。DXは全社的な変革であり、現場任せでは推進力が生まれない。第三に「現場との乖離」である。実際に業務を担う社員の声を聞かず、使われないシステムが構築されるケースが多発している。これらの問題は単独ではなく、複合的に絡み合って失敗を引き起こす。

成功企業の原則

では、成功している企業は何が違うのか。成功企業に共通するのは「ビジネス課題起点の発想」である。まず解決すべき経営課題を明確にし、その手段としてデジタル技術を選定する。また、経営者自身がDXの旗振り役となり、変革の必要性を全社に浸透させている。さらに重要なのが「スモールスタート」の姿勢である。最初から大規模なシステム刷新を狙うのではなく、小さな成功体験を積み重ねることで社内の理解と協力を得ていく。加えて、外部パートナーを活用して専門知識を補い、客観的な視点で推進状況を評価する仕組みを持っている。

成功は準備次第

DXの成否は、取り組む前の「準備」で大きく左右される。自社の現状を正しく把握し、何のためにDXを行うのかという目的を明文化することが第一歩である。その上で、経営層から現場まで一貫したビジョンを共有し、段階的に進める計画を立てるべきだ。失敗を恐れて動かないことが最大のリスクである。しかし、闇雲に進めても成果は出ない。重要なのは、正しい方向性を持って着実に歩みを進めることである。自社だけで判断が難しい場合は、DX推進の実績を持つ専門家の力を借りることも有効な選択肢となる。

まとめ

DXが失敗する会社には、目的の不明確さ、経営層の関与不足、現場との乖離という共通点がある。成功するためには、ビジネス課題を起点とした発想、経営者主導の推進体制、スモールスタートによる段階的な取り組みが不可欠である。正しい準備と専門家の支援を活用し、着実なDX推進を目指すべきだ。

続きを見る >

業務可視化によるDX推進

真の業務改善への道筋

いきなり顕在化しているアナログをデジタル化するだけでは業務改善とは言えない。真の業務改善を実現するためには、表面的な問題解決ではなく、根本的な業務の見直しが必要である。業務を可視化して正しい業務分析を行うためには、ある程度のステップを踏む必要がある。単純なデジタル化は一時的な効率化にとどまり、長期的な競争力向上には繋がらない。

目的とゴール設定

まず、目的とゴールを明確にする必要がある。なぜ業務分析をするのか、何を達成したいのかを明文化することが重要である。例えば、「手戻りを3割減らす」「問い合わせ対応時間を半分にする」「余剰コストを1千万円削減する」などの具体的な数値目標を設定する。曖昧な目標設定では、後の分析や改善施策の効果測定が困難になってしまう。定量的で測定可能な目標を立てることで、分析の方向性が明確になり、成果を客観的に評価できるようになる。

業務の可視化技法

現在の作業タスクのすべてをまずは網羅的に洗い出して、分類を行う。複数担当者で付箋にタスクを書き出し、重要度マトリクスや緊急度マトリクスで整理する方法が非常に有効である。また、必ず用意しておきたいのが、業務フロー図と業務の分担表である。誰が、いつ、どこで、何をしているかを図式化することで、無駄や重複、ボトルネックが浮き彫りになる。このプロセスにより、今まで見えなかった非効率な作業や不要なプロセスを発見できるのである。

根本原因の探求

課題の本質がまとまったら、重要な事項と緊急の事項などを切り分けて、本質的ではない事項は思い切って削除や軽減を検討する。また、抽出した課題は小さな原因に分解していき、根本原因を探る(要因分析)。リソースが限られる場合には、ABC分析(例えば顧客ランク別)で、重要顧客に注力できるよう業務配分や訪問頻度などを見直す。定量データや日報などのログ、クレームデータの活用も効果的である。AIで課題を解決するより前に、膨大な過去データをAIに処理させるのも良いだろう。

まとめ

定量化・定性化できれば、効果検証につなげる改善策と実行計画を策定する。正しい業務分析とは、単なるデジタル化ではなく明確な目的に基づいて、ボトルネックを可視化し、データと構造化された分析を行うことなのである。継続的な改善こそが真のDXを実現する。

続きを見る >