思考と決断のPM力

PMの真価

スキルシート上にあるPMというのは、どういった開発言語や開発環境などを使ってきたかという内容であることが多く、SEの延長という意味合いが強く残っている。もし、期待するポジションが発想力や提案力にあるとすれば、姿勢をみることが大切となる。

従順の呪縛

就職氷河期と呼ばれる世代より上の年齢層では、常に従うことを幼少期から叩き込まれていると考えられる。日本では「禁止」か「許可」かを常に意識しながら仕事をしており、「許可されるまでは禁止されている」と考えているのではないかと推察される。

失敗からの成長

正しいか、間違っているか、の判断基準しか持ち合わせていない場合、何か問題が発生したときに時間を遡ってどこで判断を間違えたのかを追求する。それは大切なことであるが、実際のプロジェクトでは誤ったことを反省しつつ修正しながら進むことが大切である。

判断力の真髄

エンジニア出身のPM(開発プロジェクトのPM)だと、禁止か許可かというデジタルのような見方をしている人もいる。特に今日のシステムに関するプロジェクトでは、ゼロかイチだけでは判断できないような、ウエットでアナログな状況判断が必要となる。

まとめ

たとえ能力の高いPMだったとしても、仕事になると発想することや作ることの楽しみより、ミスによる懲罰を恐れたりするために、無難で当たり障りのない判断をしがちである。システムに関するプロジェクトがなかなか前へ進まない理由でもある。

関連記事

伴走型開発で仕様変更地獄を脱出

炎上の元凶

システム開発プロジェクトにおいて「仕様変更地獄」は最も深刻な問題の一つである。開発が進むにつれて次々と変更依頼が発生し、スケジュールは遅延、コストは膨張、開発チームの疲弊が進む。こうした状況に陥った企業では、プロジェクト自体が頓挫するケースも少なくない。特に従来型の開発手法では、仕様を固めてから開発に着手するため、後から変更が入ると大きな手戻りが発生する。ビジネス環境の変化が激しい現代において、この開発スタイルは限界を迎えているのだ。

仕様変更の理由

仕様変更が頻発する背景には、いくつかの構造的な問題がある。第一に、プロジェクト開始時点で業務要件を完璧に定義することは実質的に不可能だという現実である。現場の担当者も、システムが動く姿を見るまで本当に必要な機能が見えない。第二に、開発期間中にビジネス環境や競合状況が変化し、当初の要件では不十分になることがある。第三に、発注側と開発側のコミュニケーション不足により、認識のズレが後から発覚するケースである。これらの問題は、従来の「要件定義→設計→開発」という一方通行の開発プロセスでは解決できない。

伴走型開発の効果

こうした課題を解決するのが「伴走型開発支援」というアプローチである。これは、開発ベンダーが単なる請負業者ではなく、ビジネスパートナーとして顧客企業に寄り添い、プロジェクト全体を通じて継続的に支援する手法だ。具体的には、小さな単位で機能を実装しては確認するアジャイル的な開発サイクルを回し、仕様変更を前提としたプロジェクト管理を行う。重要なのは、変更を「悪」ではなく「ビジネス価値の最大化」として捉え直すことである。定期的なレビューで優先順位を見直し、本当に必要な機能に開発リソースを集中させる。こうすることで、限られた予算と期間の中で最大の成果を生み出せるのだ。

成功の3つの鍵

伴走型開発支援を成功させるには3つのポイントがある。第一に、発注側と開発側が対等なパートナーシップを築き、透明性の高いコミュニケーションを維持することである。進捗状況や課題を隠さず共有し、一緒に解決策を考える姿勢が不可欠だ。第二に、MVP(実用最小限の製品)の考え方で、コア機能から段階的に実装していくことである。すべてを一度に完璧にしようとせず、ユーザーフィードバックを得ながら改善を重ねる。第三に、変更管理のルールを明確にし、影響範囲とコストを可視化することである。無秩序な変更を防ぎながら、本当に価値のある変更は柔軟に取り入れる。このバランスこそが成功の鍵となる。

まとめ

仕様変更地獄から抜け出すには、開発手法そのものを見直す必要がある。伴走型開発支援は、変化を受け入れながらプロジェクトを着実に前進させる現代的なアプローチである。単なる技術提供ではなく、ビジネスゴールの実現に向けた戦略的パートナーシップが、これからのシステム開発には求められているのだ。

続きを見る >

中小企業のAI活用入門

AI導入の選択肢

近年、AI技術の急速な進化により、大企業だけでなく中小企業にもAI活用の波が押し寄せている。しかし、多くの中小企業経営者は「AIは難しそう」「コストが高い」「専門人材がいない」といった不安を抱えている。実は、現在のAIツールは以前より格段に使いやすく、低コストで導入できるものが増えている。ChatGPTやClaude等の対話型AIから、画像認識、音声認識まで、業務に合わせて選べる選択肢が豊富にある。重要なのは、完璧を求めず、まず小さく始めることだ。

業務効率化の手法

AI活用で最も効果が出やすいのは、定型業務の自動化である。例えば、顧客からの問い合わせ対応にチャットボットを導入すれば、24時間365日の対応が可能になり、スタッフは付加価値の高い業務に集中できる。また、請求書処理や在庫管理にAI-OCRを活用すれば、手入力の時間を大幅に削減できる。ある製造業の中小企業では、品質検査にAI画像認識を導入し、検査時間を70%短縮した。別の小売業では、需要予測AIで在庫の最適化を実現し、廃棄ロスを30%削減した。これらの事例が示すように、AIは確実に業務を変革する力を持っている。

導入の課題と対策

しかし、AI導入には落とし穴もある。最大の失敗要因は「いきなり大規模に導入すること」である。まず現状の業務プロセスを整理し、AIで解決したい具体的な課題を明確にすることが不可欠だ。次に、小規模なパイロットプロジェクトから始め、効果を検証しながら段階的に拡大していくアプローチが成功の鍵となる。また、従業員の不安を解消するため、AIは人の仕事を奪うものではなく、サポートツールであることを丁寧に説明し、研修を実施することも重要である。外部の専門家やコンサルタントの支援を受けることで、自社に最適なAI活用方法を見つけ、導入リスクを最小限に抑えることができる。

実践ステップ

AI活用は、もはや「検討する」段階から「実行する」段階に移っている。競合他社がAIを活用して生産性を向上させる中、導入を先送りすることは競争力の低下を意味する。まずは無料や低価格のAIツールを試し、自社業務への適用可能性を探ることから始めるべきだ。重要なのは、完璧な計画を立てることではなく、小さく始めて学習しながら改善していくことである。社内にAI推進チームを作り、定期的に成果を共有することで、組織全体のAIリテラシーも向上する。今こそ、中小企業がAIの力を借りて飛躍的な成長を遂げるチャンスだ。一歩踏み出すことで、想像以上の変革が待っている。

まとめ

中小企業のAI活用は、もはや特別なことではない。定型業務の自動化から始め、段階的に拡大していくことで、確実に成果を出すことができる。重要なのは、自社の課題を明確にし、適切な支援を受けながら進めることだ。AI導入は投資ではなく、未来への必要な一歩なのである。

続きを見る >

システム開発の混迷

営業依存の弊害

業務システムがうまくいかないのはベンダーやSEの問題だけではない。SEを取り巻く環境もシステム開発には重要である。業務システム開発を依頼するベンダーであれば営業担当者が挟まる。日本の縦割り社会の中で営業担当者は非エンジニアである場合が多く、プロジェクトの成功が目的ではない場合がある。

役割の細分化

SEをプロジェクトマネージャーとしている場合も注意が必要である。日本ではシステムエンジニアは細分化されておらず、建築でいうと参加者の全員が職人という扱いであることが多い。システムに関わる人全員がSEとしてしまっている間違いである。

開発の本質

SEやベンダーのプロジェクトマネージャーはそれ自体がプロジェクトと考えていることも多く、ビジネスとしてのプロジェクトとして捉えることができていないことがある。本来はビジネスが中心にあって、その中に業務システムが位置するはずである。それが見えているか否かで、業務システム開発の成功の確率は変わるのである。

相互理解

逆に、システムのことはSEに任せているというような場合も注意が必要である。システムのプロジェクトを経験したことがある、というだけでは、システムに関連するプロジェクトを成功させるのは困難である可能性が高い。プログラミングの経験がなければ、SEやベンダーが持つ心境を察することができないからである。最も重要なことはシステム導入時のイメージである。

まとめ

欧米では当たり前のように、間接的に関与する売上や利益の向上を管掌する部門や役職があるが、日本では良くも悪くもロジカルであり、数字がなければ行動に移せない厳密なルールがある。

続きを見る >