思考と決断のPM力

PMの真価

スキルシート上にあるPMというのは、どういった開発言語や開発環境などを使ってきたかという内容であることが多く、SEの延長という意味合いが強く残っている。もし、期待するポジションが発想力や提案力にあるとすれば、姿勢をみることが大切となる。

従順の呪縛

就職氷河期と呼ばれる世代より上の年齢層では、常に従うことを幼少期から叩き込まれていると考えられる。日本では「禁止」か「許可」かを常に意識しながら仕事をしており、「許可されるまでは禁止されている」と考えているのではないかと推察される。

失敗からの成長

正しいか、間違っているか、の判断基準しか持ち合わせていない場合、何か問題が発生したときに時間を遡ってどこで判断を間違えたのかを追求する。それは大切なことであるが、実際のプロジェクトでは誤ったことを反省しつつ修正しながら進むことが大切である。

判断力の真髄

エンジニア出身のPM(開発プロジェクトのPM)だと、禁止か許可かというデジタルのような見方をしている人もいる。特に今日のシステムに関するプロジェクトでは、ゼロかイチだけでは判断できないような、ウエットでアナログな状況判断が必要となる。

まとめ

たとえ能力の高いPMだったとしても、仕事になると発想することや作ることの楽しみより、ミスによる懲罰を恐れたりするために、無難で当たり障りのない判断をしがちである。システムに関するプロジェクトがなかなか前へ進まない理由でもある。

関連記事

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >

従来開発 vs ローコード開発比較

基本概念

企業のデジタル化が加速する中、システム開発手法の選択は事業成功の鍵を握る重要な決断となっている。従来開発は、プログラマーがコードを一から書き上げる伝統的な手法で、高い技術力と豊富な経験が求められる。一方、ローコード開発は視覚的なインターフェースを活用し、最小限のコーディングでアプリケーションを構築する革新的なアプローチである。両者の特徴を正しく理解することで、プロジェクトに最適な選択が可能になる。

費用対効果

従来開発では高度なスキルを持つエンジニアの確保が必要で、人件費が開発コストの大部分を占める。特に大規模プロジェクトでは、設計から実装、テストまで長期間の人的リソースが必要となり、総コストは数千万円規模に達することも珍しくない。対してローコード開発は、専門知識が少ない人材でも短期間でアプリケーション構築が可能で、初期投資を大幅に削減できる。しかし、プラットフォームのライセンス費用や将来的なカスタマイズ制約を考慮すると、長期的なコスト効率は慎重に検討する必要がある。

開発速度

開発期間において両手法の差は歴然としている。従来開発では要件定義から本格運用まで数ヶ月から数年を要するケースが一般的で、複雑な機能実装には綿密な設計と段階的な開発が必要である。一方、ローコード開発は既存のテンプレートやコンポーネントを活用することで、数日から数週間での迅速なプロトタイプ作成が可能である。特にビジネスアプリケーションや内部管理システムでは、従来開発の10分の1以下の期間で実装できる場合もある。ただし、複雑なロジックや高度な機能が必要な場合は、結果的に従来開発と同等の期間を要することもあるため、プロジェクトの性質を見極めることが重要である。

品質と制約

システムの品質面では、それぞれ異なる特徴がある。従来開発は細部まで制御可能で、パフォーマンス最適化や独自機能の実装において高い品質を実現できる。セキュリティ要件が厳格なシステムや大量データ処理が必要な基幹システムでは、従来開発の柔軟性が威力を発揮する。ローコード開発は標準化されたコンポーネントを使用するため、一定の品質は保証されるが、プラットフォーム依存による制約がある。また、複雑な業務ロジックの実装や外部システムとの高度な連携において、期待する品質レベルに到達できない可能性もある。品質要件と開発リソースのバランスを慎重に評価することが成功の鍵となる。

まとめ

最適な開発手法の選択は、プロジェクトの目的、予算、期間、品質要件を総合的に評価して決定すべきである。ローコード開発は迅速性とコスト効率に優れ、内部業務システムや簡易的なWebアプリケーション開発に適している。従来開発は高い技術的要求や独自性が必要なシステムに最適である。重要なのは、どちらか一方に固執するのではなく、各プロジェクトの特性に応じて柔軟に選択することである。

続きを見る >

賢いコスト削減

投資と競争力

バックヤードのシステム開発は収益と直接結びつかないため、できるだけケチりたいものである。にもかかわらず、バックヤードのデジタル化には大きなコストがかかる。しかし、新しいインフラに適切な投資ができない企業は競争力を失うのである。

要件定義の罠

バックヤードのシステムをできるだけ安く抑えようと思うと、要求定義や要件定義をしっかり作って依頼すればよいと考えがちである。もちろん、間違ってはいないが、入り口が安くなるわりに、システム開発の途中で追加工数が発生してしまい、結果としてシステムが高くなってしまうのである。

未来志向の要求

システム開発の途中で追加予算がかかってしまうのは、最初の要求定義や要件定義のときに想定される未来が見えていないことが原因である。これを見通すには要求定義や要件定義を行う背景や、未来の目指すところまでをエンジニア出身のアナリストに情報共有しなければならない。

投資の真価

導入時の金額だけをケチることは、保守運用などのランニングコストに跳ね返ってきてしまい、システムの寿命が短くなる。そうならないために、第三者のIT業者やITコンサルタントを入れるほうがよいと言われている。うまくDX化できれば生産性が上がり、投資を大きく回収できる。ことIT投資については、竹槍戦か空中戦かくらいの違いを生んでしまうのである。

まとめ

システム設計やプログラミング作業と同じようにITコンサルタントも1人の能力に偏りがちである。それゆえ、PMOと呼ばれるチームを形成することで、集合知を活用して、さらに未来を予測できるような体制を構築することが望ましい。

続きを見る >