思考と決断のPM力

PMの真価

スキルシート上にあるPMというのは、どういった開発言語や開発環境などを使ってきたかという内容であることが多く、SEの延長という意味合いが強く残っている。もし、期待するポジションが発想力や提案力にあるとすれば、姿勢をみることが大切となる。

従順の呪縛

就職氷河期と呼ばれる世代より上の年齢層では、常に従うことを幼少期から叩き込まれていると考えられる。日本では「禁止」か「許可」かを常に意識しながら仕事をしており、「許可されるまでは禁止されている」と考えているのではないかと推察される。

失敗からの成長

正しいか、間違っているか、の判断基準しか持ち合わせていない場合、何か問題が発生したときに時間を遡ってどこで判断を間違えたのかを追求する。それは大切なことであるが、実際のプロジェクトでは誤ったことを反省しつつ修正しながら進むことが大切である。

判断力の真髄

エンジニア出身のPM(開発プロジェクトのPM)だと、禁止か許可かというデジタルのような見方をしている人もいる。特に今日のシステムに関するプロジェクトでは、ゼロかイチだけでは判断できないような、ウエットでアナログな状況判断が必要となる。

まとめ

たとえ能力の高いPMだったとしても、仕事になると発想することや作ることの楽しみより、ミスによる懲罰を恐れたりするために、無難で当たり障りのない判断をしがちである。システムに関するプロジェクトがなかなか前へ進まない理由でもある。

関連記事

生成AI活用術

生成AIと業務の未来

近年、ChatGPTをはじめとする生成AIが急速に普及し、ビジネスシーンでの活用が注目されている。文章作成、データ分析、アイデア創出など、これまで人間が時間をかけて行っていた業務を、AIが短時間で支援できるようになった。特に中小企業においても導入ハードルが下がり、生産性向上のための強力なツールとして認識されつつある。しかし、単にツールを導入するだけでは効果は限定的である。業務フローに適切に組み込み、活用方法を理解することが成功の鍵となる。

5つの活用法

生成AIは様々な業務シーンで活用できる。まず、メール文面や報告書などの文書作成では、下書きの自動生成により大幅な時間短縮が可能だ。次に、会議の議事録作成では、音声データから要点を抽出し整理できる。カスタマーサポートでは、よくある質問への回答案を即座に生成し、対応品質の向上と担当者の負担軽減を実現する。マーケティング分野では、SNS投稿文やキャッチコピーのアイデア出しに活用でき、クリエイティブな業務も効率化される。さらにデータ分析では、複雑なデータから傾向を読み取り、レポート作成まで支援してくれる。

注意点

一方で、生成AI導入には課題も存在する。最も多い問題は、社員のITリテラシーの差による活用格差である。一部の社員だけが使いこなし、組織全体の生産性向上につながらないケースが見られる。また、生成された内容の精度確認を怠り、誤った情報をそのまま使用してしまうリスクもある。セキュリティ面では、機密情報を不用意にAIに入力してしまう情報漏洩の懸念がある。さらに、AIに過度に依存することで、社員の思考力や創造性が低下する可能性も指摘されている。これらの課題に対しては、適切な社内ガイドラインの策定、定期的な研修の実施、そして人間の判断を最終確認として残す仕組みづくりが重要である。

活用の3原則

生成AIを効果的に活用するためには、いくつかのポイントがある。第一に、AIはあくまで「支援ツール」であり、最終的な判断は人間が行うという原則を徹底することである。第二に、段階的な導入を心がけ、小規模なプロジェクトから始めて成功体験を積み重ねることが大切だ。第三に、定期的な効果測定を行い、どの業務でどれだけの時間削減ができたかを可視化することで、改善点が明確になる。また、社内でベストプラクティスを共有し、ナレッジを蓄積することも重要である。AIと人間がそれぞれの強みを活かし、協働することで、単なる効率化を超えた価値創造が可能になる。

まとめ

生成AIは業務効率化の強力な武器だが、導入方法次第で効果は大きく変わる。適切な活用シーンの選定、社員教育、セキュリティ対策を行うことで、組織全体の生産性を飛躍的に向上させることができる。まずは小さく始めて、徐々に活用範囲を広げていくことが成功への近道である。

続きを見る >

要件定義のアプローチ

要件定義の基本

すべてをシステムで解決してしまおうとする要件定義には注意が必要である。システムの成功の可否は要件定義にかかっていると言っても過言ではない。しかし、十分に要件定義の時間を使ったにも関わらず、ITプロジェクトが失敗することがある。

規模別の要件定義

システム構築の規模によって、要件定義の粒度が変わる。小さなITプロジェクトの場合は要件定義をせずにプロトタイプを作りながらシステム構築を進めるといった方法がある。これをアジャイル開発、プロトタイプ開発と呼ぶ。

要件定義の本質

要件定義の粒度は時間を掛ければ細かくなるわけではない。ユーザー側でも要件定義を進めるにつれて、想定している機能の矛盾点が出てくることがある。この矛盾点を解消していくこと自体を要件定義としてはならない。要件定義はあくまで本質的なコアとなる部分から膨らませることが重要である。

対話型要件定義

要件定義フェーズで失敗するパターンは、ユーザー側との対話ではなく、システム会社側がヒアリングに徹する場合である。ユーザー側はITを利用してどのようなことができるかを知らない可能性が高いため、システム専門家がそれを鵜呑みにした仕様で要件を固めてしまうと、製造工程で無駄な工数が発生し予算をオーバーしてしまうことがある。

まとめ

本質的な要件をコミュニケーションによって、はっきりさせていく作業こそが要件定義と言えるのである。さまざまな視点から何度も繰り返し要件をなぞることで粒度が落ちていき、適切な要件定義書となる。何でもかんでもシステム化せず、オペレーションとの関係性を見合わせながら進めることが望ましい。

続きを見る >

SEのいうバッファとは

バッファの真意

見積りや作業スケジュールに際して、エンジニアやシステム会社から「バッファである」という回答を受けたことはないか。システム会社が言うバッファとは保険を意味していることがほとんどである。

不確実なバッファ

非エンジニアは見積りのバッファを聞いたときに、無駄なのではないかと感じる。「念のため」に必要なバッファは、裏を返すと知識がないから調べないと分からないので不安であるという意味である。知識があり、「念のため」が必要なければバッファはないと考えられる。

知識の不足

ほとんどのシステム構築プロジェクトは、バッファが多いほうが知識がないのに見積りが高くなるという矛盾が発生することになる。そう考えると「バッファ」とは「無駄」に聞こえるかもしれない。

本質のバッファ

さて、このバッファについて本来あるべき姿を説明する。本当にやってみなければ分からないといった高度な技術を使うときに、未知の領域に関するスケジュールの影響を勘案し、計画された期間のことをバッファと見るべきである。

まとめ

単なるシステム構築プロジェクトにおいて「無駄を削ればよい」というのは非エンジニアから見ると合理的でコストの軽減にもなる。しかし、研究開発分野において無駄を削ることは必ずしも合理的ではない。発想が乏しくなるからである。

続きを見る >