思考と決断のPM力

PMの真価

スキルシート上にあるPMというのは、どういった開発言語や開発環境などを使ってきたかという内容であることが多く、SEの延長という意味合いが強く残っている。もし、期待するポジションが発想力や提案力にあるとすれば、姿勢をみることが大切となる。

従順の呪縛

就職氷河期と呼ばれる世代より上の年齢層では、常に従うことを幼少期から叩き込まれていると考えられる。日本では「禁止」か「許可」かを常に意識しながら仕事をしており、「許可されるまでは禁止されている」と考えているのではないかと推察される。

失敗からの成長

正しいか、間違っているか、の判断基準しか持ち合わせていない場合、何か問題が発生したときに時間を遡ってどこで判断を間違えたのかを追求する。それは大切なことであるが、実際のプロジェクトでは誤ったことを反省しつつ修正しながら進むことが大切である。

判断力の真髄

エンジニア出身のPM(開発プロジェクトのPM)だと、禁止か許可かというデジタルのような見方をしている人もいる。特に今日のシステムに関するプロジェクトでは、ゼロかイチだけでは判断できないような、ウエットでアナログな状況判断が必要となる。

まとめ

たとえ能力の高いPMだったとしても、仕事になると発想することや作ることの楽しみより、ミスによる懲罰を恐れたりするために、無難で当たり障りのない判断をしがちである。システムに関するプロジェクトがなかなか前へ進まない理由でもある。

関連記事

生成AI失敗の3要因

期待と現実の乖離

生成AIを導入したものの、思うような成果が出ずに悩む企業が増えている。「話題だから」「競合が使っているから」という理由で導入したケースでは、現場から「結局使えない」という声が上がることも珍しくない。実は、生成AIで成果が出ない原因の多くは、ツール自体の問題ではなく、導入プロセスや運用体制に潜んでいる。本記事では、成果が出ない3つの主要因を解説する。

曖昧なゴール設定

成果が出ない最大の原因は、導入目的が不明確なことである。「業務効率化」という漠然とした目標では、具体的に何を効率化するのか、どの程度の改善を目指すのかが見えない。結果として、現場は何にAIを使えばいいかわからず、試しに使ってみても効果を実感できないまま放置される。成功している企業は「議事録作成時間を50%削減」「問い合わせ対応の一次回答を自動化」など、測定可能な目標を設定している。目的が明確であれば、適切なツール選定も、効果測定も、改善サイクルも回しやすくなる。

教育不足の弊害

二つ目の原因は、従業員への教育不足である。生成AIは万能ではなく、適切なプロンプト設計や出力結果の検証スキルが求められる。しかし多くの企業では「ツールを入れれば自然と使われる」と考え、十分な研修を実施していない。その結果、一度試して期待外れの回答が返ってきた社員は「使えない」と判断し、二度と触らなくなる。三つ目の原因は、業務との不適合である。定型的な作業や創造的な文章生成には強みを発揮するが、高度な専門判断や最新情報が必要な業務には向かない。自社の業務特性を分析せずに導入すると、AIの強みを活かせない領域で無理に使おうとして失敗する。

成功の3条件

生成AIで成果を出すためには、三つのポイントを押さえる必要がある。第一に、具体的で測定可能な導入目的を設定すること。第二に、継続的な教育プログラムを通じて社員のAIリテラシーを高めること。第三に、自社業務を棚卸しし、AIが得意な領域と苦手な領域を見極めたうえで適用範囲を決めることである。これらは当たり前のように聞こえるが、実際に徹底できている企業は少数派だ。逆に言えば、この基本を押さえるだけで、競合との差別化が可能になる。生成AIは正しく活用すれば強力な武器となるが、準備なき導入は失敗の元である。

まとめ

生成AIで成果が出ない原因は、目的の不明確さ、教育不足、業務との不適合の三点に集約される。これらはいずれもツール導入前の準備段階で解決できる課題だ。成功の鍵は、明確な目標設定、継続的な人材育成、そして業務特性に応じた適切な活用領域の選定にある。基本を徹底することが、AI活用の成否を分けるのである。

続きを見る >

内製化の成功術

IT報酬の実態

海外と比べて日本のITエンジニアの報酬が低いという記事をよく目にする。それもそのはずで、ハイクラスIT人材は都合のいい「何でも屋」にはならないからである。

導入時の誤解

ユーザー企業やシステムのユーザーは、IT化を行うことで業務が減るという先入観を持っていることがある。システム導入を着手したときの目的を忘れて、その時、その場の課題を優先して都合よくITエンジニアを動かしてしまう。また動くITエンジニアもそこにいたりする。

システムと医療

たとえば、「お腹が痛い」と病院にいって「すぐに切開しよう」とはならないはずだ。このようにシステムにもその他にも色々な条件が絡まり合っている。システムは取り扱う情報量や関連する業務が多く導入に時間がかかる。時間がかかる結果、最初の導入目的を忘れてしまうのである。

真のIT人材価値

ハイクラスIT人材はユーザー側の状況と心理を配慮しつつ、現場のプログラマーの状況と心理を考慮して陣頭指揮できる人材といってもよいだろう。心理というのは物の言い方だけではなく、無形の財産を構築したり業務にフィットさせたりするので、プロジェクトの円滑さが変わるのだ。

まとめ

小手先だけでシステムに関するプロジェクトを推進しようとすると、「言われた通りにやった」という受動的な参加者が増えてしまう。情シスのSIer化を回避するにはITエンジニアを「何でも屋」にさせて疲弊させないことも大切である。開発チームの雰囲気作りも非常に効果がある。

続きを見る >

Power Appsで簡単に業務改善

システム開発の高コストと複雑化

多くの企業では、情報システム部門や外部システム会社にシステム開発を依頼すると、仕様確認が繰り返される。「この機能はどうするか?」「ステータスはこれで全てか?」など、質問が多く、時間とコストが増大。結果、システムは複雑化し、現場のニーズに即したシンプルな解決策から遠ざかる。

野良プログラムのリスク

システム開発の手間を避けるため、各部署でExcelマクロによる「野良プログラム」が横行する。これらは各人のPCに保存され、最新版の確認が困難になり、メンテナンスも不透明。担当者がいなくなるとブラックボックス化し、セキュリティリスクも増加。放置すれば、企業全体の業務効率が低下し、情報漏洩の危険もある。

Power Appsで迅速なシステム構築

こうした問題を解決するのが、MicrosoftのPower Appsだ。従来の複雑な開発プロセスを排除し、現場担当者が自らアプリを構築できる。ドラッグ&ドロップで簡単に操作でき、セキュリティもMicrosoft標準に準拠。野良プログラムの乱立を防ぎ、システム管理とメンテナンスも容易になる。さらに、ユーザー自身がアプリを修正できるため、柔軟性も確保できる。

定量化困難な業務もデジタル化

業務のデジタル化は、数値で説明可能なタスクは簡単だが、現場には「説明しにくい」業務も多い。こうした業務は経験に依存しがちで、担当者に頼ることが多い。Power Appsは、このような曖昧な業務も迅速にアプリ化し、標準化と効率化を同時に実現する。

まとめ

Power Appsは、現場主導でアプリを作成・管理できる柔軟性を提供し、野良プログラムのリスクも解消する。複雑な開発プロセスを省き、数値化しにくい業務も効率的にデジタル化することができる。

続きを見る >