フルスクラッチは体力

開発手法の選択

フルスクラッチかパッケージか、最近ではSaaSなどもシステム構築の検討に入る。実は開発手法やツールよりも、どのようなシステムで、どれくらいの規模のシステム開発会社が担当するかが重要である。

SESのリスク

人数が多い会社であればあるほど安心感があってよいと安易に考えることは適切ではない。なぜなら、SE派遣やSESと呼ばれる人月(人工)単位で売り上げの経つ会社には技術の総合力がないからである。

技術の総合力

技術の総合力とは、SE作業やプログラミング作業などの1人で対応できる技術力を差すのではなく、システム構築やシステムの運用全般における最適手段を考えることができる能力のことである。

表層の即効性

SE派遣やSESの付加価値はその人単体のプログラミング能力に偏るため、一見対応がよく、何も問題がないように思える。しかし、これが技術的負債を作ってしまうひとつの要因でもある。

まとめ

フルスクラッチを考えるなら、SESを中心としないシステム会社で且つ人数規模も多い方がよい。安価にフルスクラッチでシステムを構築してしまうと、メンテナンスや運用でしっぺ返しが待っている。時間が経つごとにシステム保守費用が高くなるのである。

関連記事

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >

中小企業のAI活用入門

AI導入の選択肢

近年、AI技術の急速な進化により、大企業だけでなく中小企業にもAI活用の波が押し寄せている。しかし、多くの中小企業経営者は「AIは難しそう」「コストが高い」「専門人材がいない」といった不安を抱えている。実は、現在のAIツールは以前より格段に使いやすく、低コストで導入できるものが増えている。ChatGPTやClaude等の対話型AIから、画像認識、音声認識まで、業務に合わせて選べる選択肢が豊富にある。重要なのは、完璧を求めず、まず小さく始めることだ。

業務効率化の手法

AI活用で最も効果が出やすいのは、定型業務の自動化である。例えば、顧客からの問い合わせ対応にチャットボットを導入すれば、24時間365日の対応が可能になり、スタッフは付加価値の高い業務に集中できる。また、請求書処理や在庫管理にAI-OCRを活用すれば、手入力の時間を大幅に削減できる。ある製造業の中小企業では、品質検査にAI画像認識を導入し、検査時間を70%短縮した。別の小売業では、需要予測AIで在庫の最適化を実現し、廃棄ロスを30%削減した。これらの事例が示すように、AIは確実に業務を変革する力を持っている。

導入の課題と対策

しかし、AI導入には落とし穴もある。最大の失敗要因は「いきなり大規模に導入すること」である。まず現状の業務プロセスを整理し、AIで解決したい具体的な課題を明確にすることが不可欠だ。次に、小規模なパイロットプロジェクトから始め、効果を検証しながら段階的に拡大していくアプローチが成功の鍵となる。また、従業員の不安を解消するため、AIは人の仕事を奪うものではなく、サポートツールであることを丁寧に説明し、研修を実施することも重要である。外部の専門家やコンサルタントの支援を受けることで、自社に最適なAI活用方法を見つけ、導入リスクを最小限に抑えることができる。

実践ステップ

AI活用は、もはや「検討する」段階から「実行する」段階に移っている。競合他社がAIを活用して生産性を向上させる中、導入を先送りすることは競争力の低下を意味する。まずは無料や低価格のAIツールを試し、自社業務への適用可能性を探ることから始めるべきだ。重要なのは、完璧な計画を立てることではなく、小さく始めて学習しながら改善していくことである。社内にAI推進チームを作り、定期的に成果を共有することで、組織全体のAIリテラシーも向上する。今こそ、中小企業がAIの力を借りて飛躍的な成長を遂げるチャンスだ。一歩踏み出すことで、想像以上の変革が待っている。

まとめ

中小企業のAI活用は、もはや特別なことではない。定型業務の自動化から始め、段階的に拡大していくことで、確実に成果を出すことができる。重要なのは、自社の課題を明確にし、適切な支援を受けながら進めることだ。AI導入は投資ではなく、未来への必要な一歩なのである。

続きを見る >

AIチャットボットの現実

チャットボット幻想と現実

人手不足や生産性向上が叫ばれる中、多くの企業で「問い合わせ業務の多くはAIチャットボットで代替できるのではないか」という期待が高まっている。確かに、人間と自然に会話できるAIの実現は、多くの技術者が長年抱き続けた夢でもあった。しかし、過去には言語理解や文脈の把握に技術的な限界があり、実用化には程遠いというのが現実だった。こうした期待と現実のギャップが、AIチャットボット導入の失敗要因となってきた。

チャットボットの進化

2000年代には、ルールベースやシナリオ型のチャットボットが登場し、定型的なカスタマーサポートなどで徐々に実用化され始めた。とはいえ、自然な対話というより「決められた会話」に近く、限定的な使い方にとどまっていた。ところが2020年代に入り、ディープラーニングの飛躍とともに自然言語処理の精度が格段に向上し、Google、Facebook、OpenAIといった技術企業が次々に大規模言語モデル(LLM)を発表したことで、チャットボットは“おしゃべりマシン”から会話パートナーへと進化した。

ChatGPTの衝撃

ChatGPTのような生成AIが登場し、誰でも使えるようになったことで、AIチャットボットの活用は一気に加速した。従来のようなFAQへの対応だけでなく、長文の文書作成や要約、翻訳、さらにはプログラミング支援など、より複雑で創造的な作業もこなせるようになっている。人間の知的作業領域に深く入り込み、単なる効率化ツールにとどまらない存在となった。もはや「使えるかどうか」ではなく「どう使うか」が問われるフェーズに突入している。

業界全体への波及

AIチャットボットの導入は、ビジネスだけでなく教育、医療、自治体など、多様な分野に広がっている。学生の学習サポートから医療問診の補助、行政窓口での自動対応まで、AIは生活の一部に組み込まれつつある。この変化は、かつてITインフラを支えてきた旧世代のエンジニア像を超える大転換だ。業務が高度化し、かつ柔軟性が求められる現代において、AIと協働する力が企業と個人の双方に求められている。

まとめ

AIチャットボットは、単なる業務効率化ではなく、人間の知的作業を補助する“共創”のパートナーである。ただし誤情報、倫理、プライバシーといった課題も存在する。こうした課題を踏まえ、社会全体でのルール整備と、使い方の成熟が必要だ。AI導入を成功させるには、「AIも使い様」という視点が欠かせない。ITの導入に乗り遅れてきた企業ほど、AI活用でも二の舞になりかねない。アタラキシアDXは、AI黎明期からの導入支援経験をもとに、技術とビジネスの橋渡しを支援している。

続きを見る >