フルスクラッチは体力

開発手法の選択

フルスクラッチかパッケージか、最近ではSaaSなどもシステム構築の検討に入る。実は開発手法やツールよりも、どのようなシステムで、どれくらいの規模のシステム開発会社が担当するかが重要である。

SESのリスク

人数が多い会社であればあるほど安心感があってよいと安易に考えることは適切ではない。なぜなら、SE派遣やSESと呼ばれる人月(人工)単位で売り上げの経つ会社には技術の総合力がないからである。

技術の総合力

技術の総合力とは、SE作業やプログラミング作業などの1人で対応できる技術力を差すのではなく、システム構築やシステムの運用全般における最適手段を考えることができる能力のことである。

表層の即効性

SE派遣やSESの付加価値はその人単体のプログラミング能力に偏るため、一見対応がよく、何も問題がないように思える。しかし、これが技術的負債を作ってしまうひとつの要因でもある。

まとめ

フルスクラッチを考えるなら、SESを中心としないシステム会社で且つ人数規模も多い方がよい。安価にフルスクラッチでシステムを構築してしまうと、メンテナンスや運用でしっぺ返しが待っている。時間が経つごとにシステム保守費用が高くなるのである。

関連記事

要件定義の問題点

はじめに

会社の雰囲気や要件定義の内容をみれば、おおよそそのプロジェクトが成功するか否かがわかる。うまくいかない場合のユーザー側とシステム会社側の原因の一例である。

・要件定義をシステム会社に任せてしまう
・元請けシステム会社が無理な要件でも受注する
・準委任契約の人材紹介会社がリスクなく利鞘を稼げる
・末端エンジニアの作業遂行以外の責任
・ユーザー側、発注側の担当者が保身する

今回はその背景を説明したい。

要件定義の丸投げ

要件定義をシステム会社に任せてしまう。
要件定義はシステム会社がユーザー企業をヒアリングして作るものではなく、ユーザーとシステム会社が議論を重ねることで答えを出していくものにしなくてはならない。ユーザーが目指すべき姿と、システム会社が実現すべき姿のすり合わせが重要である。

無理な受注

元請けシステム会社が無理な要件でも受注する。
無理な要件でも受注できるのは、発注側にもシステムの知識がないため、ゴールが曖昧なまま元請けシステム会社が請け負ってしまうからである。もし、発注側にITリテラシーがなければ、パワハラなども発生する可能性が高い。したがって、元請けシステム会社に精神的な課題を回避するため、要件定義を作る人でさえも二次受けシステム会社から集めてくることがある。

人材紹介会社の利益構造

準委任契約の人材紹介会社がリスクなく利鞘を稼げる。
システムの完成責任は負わず、作業だけ請け負うことになるため、人さえ集めてくれば、そこでリスクなく利鞘が稼げる。発注側のユーザー企業からすれば、契約は元請けシステム会社であるため、3次請け、4次請けを使おうが、完成さえすればいいと考えていることが多い。

エンジニアの責任範囲

末端エンジニアの作業遂行以外の責任。
末端のエンジニアには、クライアントとの調整や導入、一定品質や納期の遵守など、責任感や危機感がないこともある。プロジェクトの全貌が見えないことも原因である。また、言われたことをやるだけで報酬がそこそこあるのが、システムエンジニアの業界だったりするので、作業をした時間分だけ報酬を支払ってほしい、という話にもなる。

発注側の保身

ユーザー側、発注側の担当者が保身する。
システム開発がうまくいかなかったときに、発注側の担当者がシステム会社に責任を押し付けるといったことがある。これは信頼関係によるもので、共同でプロジェクトを成功させようという目標が作れなかった場合に発生する。システム会社を業者扱いして要件定義を丸投げしてしまわないようにしなければならない。

続きを見る >

オフショア開発の変遷と現状

オフショア開発のコストダウン目的

オフショア開発における主要な目的は、プロジェクトの総コストを削減するために人件費を削減することです。日本の開発者の人件費が高いため、ベトナムの開発者と置き換えることで財務的なコストダウンを実現してきました。ただし、外国に発注するということは、品質の低さと言葉の壁という2つの問題がつねにつきまといます。

内部コストと労働者の負担

人件費の削減は財務上のコストダウン効果を直接的に実現しますが、品質の低さや言葉の壁といった問題は現場の労働時間や精神的な負担として現れる内部コストです。これらの内部コストは労働者に転嫁され、営業側が値引きを行い開発現場の労働に影響を与える仕組みとなっています。オフショア開発に対する開発現場からの評判の悪さは、このような直接的な感覚から生じていると考えられます。

品質の向上と言語の壁

品質の低さや言葉の壁は改善の兆しを見せています。20年前と比較すると、通信手段や開発ツールが進歩しました。チャットやビデオ会議、画面共有などの技術が利用できるようになりました。また、クラウドやソースコードの共有などの管理システムも進化しました。言語の壁も同様で、ベトナムにおける日本語の理解力や日本人における英語の能力は向上しています。さらに、機械翻訳の進歩により、外国語を交えながら技術的な会話が容易になりました。

品質と納期の重要性

オフショア開発において品質と納期は重要な要素です。納期を守り、仕様を満たすことが最終的な評価基準となります。優れた開発チームやツールの活用は重要ですが、納期の達成と仕様の達成が果たされなければ、プロジェクトは失敗となります。

新たなオフショア開発の戦略

オフショア開発におけるコストダウンの戦略は、技術の進歩を活用する方向に進んでいます。開発手法として、ウォーターフォール型ではなくジャイルやOSS的な手法を導入することが求められています。また、国際的な標準的なツールやバージョン管理などの利用も重要です。さらに、コミュニケーションの円滑化も不可欠です。言葉の問題だけでなく、コミュニケーションの円滑化は人間によって担保されます。

オフショア開発の変遷において、品質やコミュニケーションの改善は見られますが、人件費の差によるコストダウンは限界に近づいています。技術の進歩を取り入れた新たな戦略の導入により、より効果的なオフショア開発を実現することができるでしょう。

続きを見る >

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >