フルスクラッチは体力

開発手法の選択

フルスクラッチかパッケージか、最近ではSaaSなどもシステム構築の検討に入る。実は開発手法やツールよりも、どのようなシステムで、どれくらいの規模のシステム開発会社が担当するかが重要である。

SESのリスク

人数が多い会社であればあるほど安心感があってよいと安易に考えることは適切ではない。なぜなら、SE派遣やSESと呼ばれる人月(人工)単位で売り上げの経つ会社には技術の総合力がないからである。

技術の総合力

技術の総合力とは、SE作業やプログラミング作業などの1人で対応できる技術力を差すのではなく、システム構築やシステムの運用全般における最適手段を考えることができる能力のことである。

表層の即効性

SE派遣やSESの付加価値はその人単体のプログラミング能力に偏るため、一見対応がよく、何も問題がないように思える。しかし、これが技術的負債を作ってしまうひとつの要因でもある。

まとめ

フルスクラッチを考えるなら、SESを中心としないシステム会社で且つ人数規模も多い方がよい。安価にフルスクラッチでシステムを構築してしまうと、メンテナンスや運用でしっぺ返しが待っている。時間が経つごとにシステム保守費用が高くなるのである。

関連記事

従来開発 vs ローコード開発比較

基本概念

企業のデジタル化が加速する中、システム開発手法の選択は事業成功の鍵を握る重要な決断となっている。従来開発は、プログラマーがコードを一から書き上げる伝統的な手法で、高い技術力と豊富な経験が求められる。一方、ローコード開発は視覚的なインターフェースを活用し、最小限のコーディングでアプリケーションを構築する革新的なアプローチである。両者の特徴を正しく理解することで、プロジェクトに最適な選択が可能になる。

費用対効果

従来開発では高度なスキルを持つエンジニアの確保が必要で、人件費が開発コストの大部分を占める。特に大規模プロジェクトでは、設計から実装、テストまで長期間の人的リソースが必要となり、総コストは数千万円規模に達することも珍しくない。対してローコード開発は、専門知識が少ない人材でも短期間でアプリケーション構築が可能で、初期投資を大幅に削減できる。しかし、プラットフォームのライセンス費用や将来的なカスタマイズ制約を考慮すると、長期的なコスト効率は慎重に検討する必要がある。

開発速度

開発期間において両手法の差は歴然としている。従来開発では要件定義から本格運用まで数ヶ月から数年を要するケースが一般的で、複雑な機能実装には綿密な設計と段階的な開発が必要である。一方、ローコード開発は既存のテンプレートやコンポーネントを活用することで、数日から数週間での迅速なプロトタイプ作成が可能である。特にビジネスアプリケーションや内部管理システムでは、従来開発の10分の1以下の期間で実装できる場合もある。ただし、複雑なロジックや高度な機能が必要な場合は、結果的に従来開発と同等の期間を要することもあるため、プロジェクトの性質を見極めることが重要である。

品質と制約

システムの品質面では、それぞれ異なる特徴がある。従来開発は細部まで制御可能で、パフォーマンス最適化や独自機能の実装において高い品質を実現できる。セキュリティ要件が厳格なシステムや大量データ処理が必要な基幹システムでは、従来開発の柔軟性が威力を発揮する。ローコード開発は標準化されたコンポーネントを使用するため、一定の品質は保証されるが、プラットフォーム依存による制約がある。また、複雑な業務ロジックの実装や外部システムとの高度な連携において、期待する品質レベルに到達できない可能性もある。品質要件と開発リソースのバランスを慎重に評価することが成功の鍵となる。

まとめ

最適な開発手法の選択は、プロジェクトの目的、予算、期間、品質要件を総合的に評価して決定すべきである。ローコード開発は迅速性とコスト効率に優れ、内部業務システムや簡易的なWebアプリケーション開発に適している。従来開発は高い技術的要求や独自性が必要なシステムに最適である。重要なのは、どちらか一方に固執するのではなく、各プロジェクトの特性に応じて柔軟に選択することである。

続きを見る >

オフショア開発における契約形態の選択と、重要なポイント

オフショア開発には、受託開発、ラボ開発、そして折衷型の3つの契約形態が存在します。それぞれの契約形態には特徴と課題がありますが、最終的にここで「折衷型」と述べているものに集約していく傾向があります。

受託開発契約とその特徴

受託開発契約は、成果物の納品を約束する契約形態です。この形態では、事前に成果物の定義を明確にし、それに基づいて開発を進めます。受託開発契約はソフトウェア開発においてシンプルな形態と言えますが、成果物の定義を明確にすることは容易ではありません。実際の開発作業では、概念上の定義と現実の制約との間で調整が必要となる場合があります。

ラボ開発契約とその特徴

ラボ開発契約は、クライアントが直接開発者に対して指示を出す契約形態です。クライアントは開発者を拘束し、その時間を購入します。この形態は、日本のSES契約に近いものですが、ラボ開発では開発者は非常駐となります。時間単位で開発者の貢献を購入するため、時間の品質によって成果物の品質が保証されるわけではありません。開発者によって同じ時間内でも成果物の差が生じることがあります。

折衷型契約の意義とその特徴

折衷型契約は受託開発契約とラボ開発契約の折衷案として採用されます。この契約形態では、成果物の定義を柔軟にし、一定の作業時間も確保しながら、基本的にボトムアップ型で開発を進めていきます。オフショア開発においては、ビジネスモデルやクライアントの要求を理解し、中核的な開発人材(例えば、ブリッジエンジニア)を確保することが重要です。中核的な人材はクライアントのビジネスについて深い洞察を持ち、長期的な関係を築くことができます。このような中核人材をラボ契約で時間拘束的に確保し、プロジェクトが大型化したときはスポットで追加の受託契約を行い、人を追加で確保するというものです。

折衷案に収斂していく実際のプロジェクト

受託開発としてスタートしたプロジェクトでも、ラボ開発としてスタートしたプロジェクトでも、ベトナムでのオフショア開発が成功し長く続いている案件は、最終的に折衷案に収斂していく傾向があるようです。多くの場合は海外開発拠点は、日本の開発プロジェクトの外付け工場という位置づけになりますので、クライアントのビジネスをよく知った開発者を確保しつつスケーラビリティを確保するという両方が求められることとなり、このような形に落ち着くのでしょう。

もしこの形をゴールとするのならば、下記の2点に注目するのが良いでしょう。

(a) 長期契約が必要なこと:クライアントのビジネスモデルや独自の用語を理解し、本当に重要な要素を把握するためには時間が必要です。クライアントのビジネスに寄り添いながら開発を行うためには、最低でも1年以上の長期契約が必要です。

(b) ブリッジエンジニアを始めとする中核的人材の確保が大切であること:中核的な開発人材は、クライアントのビジネスをよく理解し、ビジネスの要件に応じて開発を進めることができる人材です。彼らは長期的なパートナーシップを築き、クライアントのビジネス成果に貢献します。そのため、オフショア開発においては、ブリッジエンジニアなどの中核的な人材の確保が極めて重要です。

オフショア開発においては、契約形態の選択とビジネス戦略の統合が成功の鍵となります。ビジネスの長期的な視点と中核的な人材の確保を重視することで、効果的なオフショア開発を実現することができるでしょう。

続きを見る >

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >