フルスクラッチは体力

開発手法の選択

フルスクラッチかパッケージか、最近ではSaaSなどもシステム構築の検討に入る。実は開発手法やツールよりも、どのようなシステムで、どれくらいの規模のシステム開発会社が担当するかが重要である。

SESのリスク

人数が多い会社であればあるほど安心感があってよいと安易に考えることは適切ではない。なぜなら、SE派遣やSESと呼ばれる人月(人工)単位で売り上げの経つ会社には技術の総合力がないからである。

技術の総合力

技術の総合力とは、SE作業やプログラミング作業などの1人で対応できる技術力を差すのではなく、システム構築やシステムの運用全般における最適手段を考えることができる能力のことである。

表層の即効性

SE派遣やSESの付加価値はその人単体のプログラミング能力に偏るため、一見対応がよく、何も問題がないように思える。しかし、これが技術的負債を作ってしまうひとつの要因でもある。

まとめ

フルスクラッチを考えるなら、SESを中心としないシステム会社で且つ人数規模も多い方がよい。安価にフルスクラッチでシステムを構築してしまうと、メンテナンスや運用でしっぺ返しが待っている。時間が経つごとにシステム保守費用が高くなるのである。

関連記事

マクロからPower Appsへ

ゾンビファイル

今から十数年前に作られたExcelやAccessでのマクロプログラムが今もなお残り続けている。表計算ソフトと呼ばれるデータベースに似たツールを背景にユーザーインターフェースやロジックを付け足したものである。もはやゾンビファイルと言っても過言ではない。これらのシステムは当初の目的を果たしていても、時代の変化とともに保守性や拡張性に大きな課題を抱えるようになっている。

作成者不明問題

社内に残る通称「マクロ」は、今はいない人が作成していたり、一部の人が独自に作ったものであることが多くある。作った人がいる場合はまだしも、退職している場合はその中のプログラムも見ることができないので、いつ止まるか分からないシステムを業務の中心で使い続けていくことになる。このような状況では、エラーが発生した際の対処法が不明で、業務継続に深刻なリスクをもたらす可能性がある。

市民開発解決法

ブラックボックス化したマクロを情報システム部に解決をお願いするのではなく、市民開発にて解決するには多少のコツが必要になる。ポイントは完全にブラックボックス化している状態や、何から手を付けていいか分からない状態のマクロ群は、残念ながらまずは専門家に情報の整理を依頼することが必要になるだろう。自社だけでの解決を試みる前に、適切な専門知識を持つパートナーとの連携を検討することが成功への近道となる。

専門家活用法

専門家に依頼したほうがいい理由として、マクロファイルの解析だけを切り離した作業としてしまうと、その後の市民開発へ繋ぎにくくなるからである。マクロファイルのインプット/アウトプットを解析した上で、それをどのように今後の市民開発のベース作りに活かすのか。ITコンサルやシステム開発会社の腕の見せどころである。単純な解析作業ではなく、将来的な発展性を見据えた戦略的なアプローチが求められる領域といえるだろう。

まとめ

ExcelやAccessはMicrosoft社の製品であるので、そのままMicrosoft社が提供するPower PlatformやPower Appsへの移行がスマートである。間違ってもマクロをスクラッチ開発でのWebシステムに移管すべきではない。親和性の問題や閲覧性などに課題がのこることが多いようである。

続きを見る >

IoT業務改善が進まない理由

IoT導入の落とし穴

製造業や物流業を中心に、IoTセンサーやデバイスの導入が加速している。設備の稼働状況、温度・湿度、位置情報など、あらゆるデータがリアルタイムで収集できる時代になった。しかし、IoTを導入したものの「期待した業務改善効果が得られない」という声が多く聞かれる。データは確かに取得できているのに、なぜ業務改善に結びつかないのか。この問題は多くの企業が直面している共通の課題である。

データの墓場化

IoTデバイスから送られてくるデータは、サーバーやクラウドに蓄積されていく。しかし、その膨大なデータを見ても「何をすればいいのか分からない」という状況に陥る企業が少なくない。ダッシュボードには数値やグラフが表示されているものの、それを見て具体的なアクションを起こせる人材がいない。結果として、高額な投資をしたIoTシステムが「データ収集マシン」で終わってしまい、経営層からは「費用対効果が見えない」と指摘される悪循環に陥る。

失敗の典型パターン

活用が進まない企業には明確な共通点がある。第一に「導入目的が曖昧」なケースだ。「とりあえずIoTを入れてみよう」という姿勢では、取得すべきデータの種類も不明確になる。第二に「データ分析のスキル不足」である。統計知識やデータ分析ツールの使い方を理解している人材がいなければ、データから意味のある洞察は得られない。第三に「業務プロセスとの連携不足」だ。データ分析の結果を実際の業務改善アクションに落とし込む仕組みがなければ、分析は絵に描いた餅で終わる。これらの問題は技術以前の、組織体制や戦略の問題なのである。

正しい活用ステップ

IoTを真に業務改善につなげるには、段階的なアプローチが必要だ。まず「解決したい課題」を明確にし、その課題解決に必要なデータだけを取得する設計から始める。次に、データを見える化するだけでなく、「どの数値がどうなったら、誰が何をするか」というアクションルールを事前に設定する。さらに、現場担当者がデータを日常的に確認し、判断できるよう、シンプルなダッシュボードと教育体制を整えることが重要だ。IoT活用は技術導入ではなく、業務プロセス改革として捉え、全社的な取り組みとして推進することで初めて成果が生まれる。

まとめ

IoTで業務改善が進まない企業の共通点は、データ収集が目的化し、活用のための戦略・スキル・体制が不足している点である。導入前の課題設定、データ分析人材の育成、業務プロセスへの組み込みという3つの要素を整えることで、IoTは真の業務改善ツールになる。技術導入だけでなく、組織全体での活用文化の醸成が成功の鍵である。

続きを見る >

デジタル化の誤解:効率化の落とし穴

デジタル化は効率化を保証しない

デジタル化と聞くと、多くの人が効率化を期待する。しかし、たとえばFAXで受け取った紙の受注をOCR(文字認識)でデジタルデータ化し、データベースに保存しても、それは単なるデジタル化に過ぎない。デジタル化を行うだけでは本質的な効率向上は望めず、業務フローの見直しがなければ効果は限定的だ。

非効率なフローをそのままデジタル化するリスク

最も大きな問題は、業務フローを見直さずにデジタル化を行うことだ。従来の手作業のフローをそのままデジタル化すれば、かえって作業が煩雑化し、時間がかかることもある。特にITに疎い権限者が意思決定を行う場合、このような失敗はよく見られる。「デジタル化=効率化」と誤解し、実際には逆効果となるケースも少なくない。

俯瞰できないシステム担当者の問題

システム担当者やシステム会社が、俯瞰的な視点を持たない場合も問題だ。業務フローを把握せず、指示通りにデジタル化を進めれば、非効率なシステムが出来上がる。ユーザー部門は「IT化で逆に効率が悪くなった」と感じ、最悪の場合、システムが欠陥品だと誤解されることもある。業務の流れを把握し、適切にデジタル化を進めることが必要だ。

生成AI導入の失敗例

生成AIの導入に関する相談も増えているが、その多くは「期待通りに動かない」という内容だ。その原因は、多くの場合、AIが本来必要ない箇所に導入されていることだ。たとえば、ただのデータ管理であれば、生成AIではなくRDB(リレーショナルデータベース)のほうが合理的だ。効率を上げるには、AIの利用が本当に適切かを見極める判断力が必要だ。

まとめ

「ITが分からないから任せる」という姿勢はリスクが高い。ITを知らない人がIT化を進めるのは、決算書を読めないのに経営をするのと同じだ。業務フローを理解し、技術を正しく活用するには横断的な視点と経験が不可欠だ。

続きを見る >