フルスクラッチは体力

開発手法の選択

フルスクラッチかパッケージか、最近ではSaaSなどもシステム構築の検討に入る。実は開発手法やツールよりも、どのようなシステムで、どれくらいの規模のシステム開発会社が担当するかが重要である。

SESのリスク

人数が多い会社であればあるほど安心感があってよいと安易に考えることは適切ではない。なぜなら、SE派遣やSESと呼ばれる人月(人工)単位で売り上げの経つ会社には技術の総合力がないからである。

技術の総合力

技術の総合力とは、SE作業やプログラミング作業などの1人で対応できる技術力を差すのではなく、システム構築やシステムの運用全般における最適手段を考えることができる能力のことである。

表層の即効性

SE派遣やSESの付加価値はその人単体のプログラミング能力に偏るため、一見対応がよく、何も問題がないように思える。しかし、これが技術的負債を作ってしまうひとつの要因でもある。

まとめ

フルスクラッチを考えるなら、SESを中心としないシステム会社で且つ人数規模も多い方がよい。安価にフルスクラッチでシステムを構築してしまうと、メンテナンスや運用でしっぺ返しが待っている。時間が経つごとにシステム保守費用が高くなるのである。

関連記事

製造業DX – IoT×ローコード活用法

IoT導入の新時代

製造業の現場では、人手不足や品質管理の課題が深刻化しているが、IoTとローコード技術の組み合わせが解決策として注目されている。従来のシステム開発には高額な費用と長期間を要していたが、ローコードプラットフォームを活用することで、現場の作業者でも直感的にIoTシステムを構築できるようになった。センサーからのデータ収集、機械の稼働状況監視、品質データの自動記録など、これまで手作業で行っていた業務を効率化できる。

ローコード開発の威力

ローコード開発プラットフォームは、プログラミング知識がなくても視覚的な操作でアプリケーションを作成できる革新的な技術である。製造現場の作業者が自分たちのニーズに合わせてリアルタイムでシステムをカスタマイズでき、IT部門への依存を大幅に減らせる。温度センサー、振動センサー、カメラなどのIoTデバイスと連携させることで、設備の予知保全や作業効率の向上を実現できる。従来の開発期間を3分の1に短縮し、コストも大幅に削減できるため、中小企業でも導入しやすくなっている。

成功事例と導入効果

実際の導入事例を見ると、ある自動車部品メーカーでは設備稼働率が15%向上し、品質不良率を30%削減できた。IoTセンサーで機械の振動や温度を常時監視し、異常を検知すると自動でアラートを発信するシステムを構築したのである。また、食品製造業では温度・湿度管理の自動化により、品質検査時間を50%短縮し、人的ミスによる製品廃棄を90%削減した。これらの成果は、現場作業者がローコードツールを使って自ら問題解決に取り組んだ結果であり、外部ベンダーに依存しない持続可能なDX推進を実現している。

未来の製造業像

IoT×ローコード技術は単なるデジタル化を超えて、製造業の競争力を根本的に変革する力を持っている。現場の知見を活かしたシステム構築により、真に使えるDXソリューションが生まれ、継続的な改善サイクルが確立される。今後はAI技術との融合により、さらに高度な予測分析や自動最適化が可能になるだろう。重要なのは小さく始めて段階的に拡張していくアプローチである。まずは一つの工程から始めて成功体験を積み重ね、徐々に全社規模へ展開していくことで、確実にDX効果を実感できる。変化に対応できる柔軟な組織作りこそが成功の鍵となる。

まとめ

IoT×ローコード技術は、製造業DXの民主化を実現する画期的なソリューションである。プログラミング不要で現場主導のシステム構築が可能になり、短期間・低コストでの導入を実現できる。成功事例が示すように、設備稼働率向上、品質改善、作業効率化など具体的な成果が期待できる。重要なのは小さく始めて段階的に拡張するアプローチであり、現場の知見を活かした持続可能なDX推進が可能になる。

続きを見る >

ローコード開発≠安い

誤解されるコスト削減

実はローコード・ノーコードツールを使えば、開発が必要なくなるので安くなるというのは正しくない。たしかに、ノーコードツールを社内メンバーでCMSを使ってソフトを作るという場面は開発費用はかからない。

CMSとはコンテンツ・マネジメント・システムの略で、たとえばWebサイトのコンテンツを構成するテキストや画像、デザインなどを非エンジニアがプログラミングをせずに作成や管理できる仕組みのことである。ローコードツールはそれに加えて少しのプログラミング知識でシステムやツールを作成できることである。

開発手法の選択基準

断じてローコード開発だからといって安いわけではない。開発手法の特性による得手不得手を上手に使い分けるからトータルとして価格が安くなるということである。非エンジニア営業の金額調整という意味での判断でローコード開発を選択する場合は失敗することがある。

システム導入の本質理解

ローコード開発でも、システム導入の目的や条件が本質的にわかっていなければ、仕様要件のブレによって結果としてトータルが安くなることはない。これはローコード開発ということが問題なのではなく、フルスクラッチ開発であっても、SaaSと利用する場合であっても同じことが言える。

負債の危険

本来ローコード開発が適さない場合にも関わらず無理やりに合わせることで、プログラム部分の複雑性が増し、技術的負債となって大きな問題になっていく。結果として安くはならず、ローコード開発のメリットであるメンテナンス性までも損なうため、トータルで考えると高くなる。

まとめ

お客様の予算内で考えないといけないので、といった口癖があれば注意が必要である。クライアントの言いなり状態であれば、無理な要求は開発における仕様だけではないだろう。金額を含めた総合的な判断ができる人が、結果としてローコード開発を選択するわけである。

続きを見る >

業務可視化によるDX推進

真の業務改善への道筋

いきなり顕在化しているアナログをデジタル化するだけでは業務改善とは言えない。真の業務改善を実現するためには、表面的な問題解決ではなく、根本的な業務の見直しが必要である。業務を可視化して正しい業務分析を行うためには、ある程度のステップを踏む必要がある。単純なデジタル化は一時的な効率化にとどまり、長期的な競争力向上には繋がらない。

目的とゴール設定

まず、目的とゴールを明確にする必要がある。なぜ業務分析をするのか、何を達成したいのかを明文化することが重要である。例えば、「手戻りを3割減らす」「問い合わせ対応時間を半分にする」「余剰コストを1千万円削減する」などの具体的な数値目標を設定する。曖昧な目標設定では、後の分析や改善施策の効果測定が困難になってしまう。定量的で測定可能な目標を立てることで、分析の方向性が明確になり、成果を客観的に評価できるようになる。

業務の可視化技法

現在の作業タスクのすべてをまずは網羅的に洗い出して、分類を行う。複数担当者で付箋にタスクを書き出し、重要度マトリクスや緊急度マトリクスで整理する方法が非常に有効である。また、必ず用意しておきたいのが、業務フロー図と業務の分担表である。誰が、いつ、どこで、何をしているかを図式化することで、無駄や重複、ボトルネックが浮き彫りになる。このプロセスにより、今まで見えなかった非効率な作業や不要なプロセスを発見できるのである。

根本原因の探求

課題の本質がまとまったら、重要な事項と緊急の事項などを切り分けて、本質的ではない事項は思い切って削除や軽減を検討する。また、抽出した課題は小さな原因に分解していき、根本原因を探る(要因分析)。リソースが限られる場合には、ABC分析(例えば顧客ランク別)で、重要顧客に注力できるよう業務配分や訪問頻度などを見直す。定量データや日報などのログ、クレームデータの活用も効果的である。AIで課題を解決するより前に、膨大な過去データをAIに処理させるのも良いだろう。

まとめ

定量化・定性化できれば、効果検証につなげる改善策と実行計画を策定する。正しい業務分析とは、単なるデジタル化ではなく明確な目的に基づいて、ボトルネックを可視化し、データと構造化された分析を行うことなのである。継続的な改善こそが真のDXを実現する。

続きを見る >