フルスクラッチは体力

開発手法の選択

フルスクラッチかパッケージか、最近ではSaaSなどもシステム構築の検討に入る。実は開発手法やツールよりも、どのようなシステムで、どれくらいの規模のシステム開発会社が担当するかが重要である。

SESのリスク

人数が多い会社であればあるほど安心感があってよいと安易に考えることは適切ではない。なぜなら、SE派遣やSESと呼ばれる人月(人工)単位で売り上げの経つ会社には技術の総合力がないからである。

技術の総合力

技術の総合力とは、SE作業やプログラミング作業などの1人で対応できる技術力を差すのではなく、システム構築やシステムの運用全般における最適手段を考えることができる能力のことである。

表層の即効性

SE派遣やSESの付加価値はその人単体のプログラミング能力に偏るため、一見対応がよく、何も問題がないように思える。しかし、これが技術的負債を作ってしまうひとつの要因でもある。

まとめ

フルスクラッチを考えるなら、SESを中心としないシステム会社で且つ人数規模も多い方がよい。安価にフルスクラッチでシステムを構築してしまうと、メンテナンスや運用でしっぺ返しが待っている。時間が経つごとにシステム保守費用が高くなるのである。

関連記事

日本の技術人材不足とオフショア開発

セクション1: 日本のソフトウェア開発人材不足の背景

日本のソフトウェア開発業界は50年以上の歴史を持ち、多くの経験豊富なエンジニアが存在します。しかし、現在の日本では開発人材の不足が深刻な問題となっています。この人材不足は、企業が即戦力となるエンジニアを安価で求めるという要望に由来しています。そのため、日本の人材不足はしばしば「即戦力を安く求める欲求」として揶揄されることもありますが、この言い方には一面の真実も含まれています。企業が効率的な開発を行うためには、即戦力のエンジニアが必要なのは当然のことです。

また、この人材不足の問題は、単に日本だけに限ったものではありません。他の海外でも同様の人材不足が起きています。したがって、オフショア開発を検討する際には、都合の良い人材を海外で見つけることができるという考え方は一部正解であり、一部誤解とも言えます。

セクション2: 日本とベトナムのエンジニアの特徴

日本のエンジニアは、特にWeb関連のエンジニアにおいては、1990年代からのキャリアを持つベテランが多く存在します。そのため、文字コードやバイナリ、組み込み技術など、古いOSや低レベルの知識を必要とする開発においては、日本の技術者は強みを持っています。一方、新しいフレームワークや概念の習得には、国民性よりも年齢が影響を与える傾向があります。そのため、ベトナムのエンジニアは若さを活かして新しい技術を素早く学ぶことが得意と言えます。

また、コンピューター業界においては、上流と下流、低レベルと高レベルといった言葉が中立的に使われますが、この意味において日本は低レベル開発に向いており、ベトナムは高レベル開発に向いていると言えます。そのため、バランスの取れたオフショア開発を行うためには、日本のエンジニアのジェネラリスト的な能力とベトナムのエンジニアのスペシャリスト的な能力を組み合わせることが重要です。

セクション3: 日本とベトナムの開発手法の違い

日本のソフトウェア開発では、納期を守るためにウォーターフォール型の開発手法が主流です。アジャイル開発が概念的には取り入れられつつありますが、完全にアジャイルな開発プロセスを採用しているケースはまだまれです。一方、ベトナムのソフトウェア開発は、日本の開発手法と大きく異なるわけではありません。基本的には納期を守るためのウォーターフォール型の手法が一般的ですが、OSSの影響を受けて開発手法が変化しつつあります。

日本の開発現場と比較して、ベトナムの開発手法の利点は、新しいフレームワークや技術の習得において素早い反応性を持つことです。ベトナムのエンジニアは若く、学習意欲が高いため、最新の技術に対する理解が早く、柔軟に対応できるという特徴があります。ただし、ベトナムの開発現場においては、アジャイル開発の完全な導入はまだ一般的ではないことに注意が必要です。

セクション4: 言語の壁以外の考慮すべきポイント

ベトナムのエンジニアを活用する際に言語の壁を乗り越えるためには、円滑なコミュニケーションを図ることが重要です。英語がビジネスコミュニケーションの共通語となっているため、日本の企業がベトナムのエンジニアとのコミュニケーションを円滑に行うためには、英語教育の強化や翻訳ツールの活用などが有効です。また、文化やコミュニケーションスタイルの違いも考慮すべきポイントです。異なる文化背景を持つエンジニア同士が協力する場合、相手の文化に対する理解や尊重が求められます。

セクション5: 成功へのカギはバランスと柔軟性

ベトナムでのソフトウェア開発のオフショアを成功させるためには、日本とベトナムのエンジニアの特長を組み合わせることが重要です。日本のエンジニアはジェネラリストとして幅広い知識と経験を持っており、プロジェクト全体の管理や技術的な統括を担当することが得意です。一方、ベトナムのエンジニアはスペシャリストとして特定の技術に精通しており、新しい技術の習得にも素早く対応できます。

オフショア開発においては、開発現場のバランスと柔軟性が求められます。例えば、日本のエンジニアがジェネラリストとしてプロジェクトを牽引し、ベトナムのエンジニアがスペシャリストとして特定の技術領域を担当する役割分担が効果的です。また、現代的な開発手法を用いることも重要です。ウォーターフォール型の手法に加えてアジャイル開発の一部を取り入れるなど、柔軟に適切な手法を選択することが目的達成(コストダウン実現)へのカギとなります。

続きを見る >

AIの教師モデル開発や画像のタグ付けを目的としたBPO的なプロジェクトにはベトナムオフショアが向いている理由

AI教師モデルにおけるBPOの重要性

AI技術の急速な進化により、教師モデルの構築が重要視されています。テキスト型のAIだけでなく、画像認識などの領域でも教師モデルの役割は増大しています。これらのモデルの開発には人手によるタグ付けや手作業が不可欠です。こうした教師モデルのプロジェクトをBPO(ビジネス・プロセス・アウトソーシング)としてオフショアに委託することで、労働力の確保とコスト効率の向上を図ることが可能です。

ベトナムのBPOにおけるアドバンテージ

ベトナムはBPOプロジェクトにおいて、他の国に比べてアドバンテージを持っています。BPOの重要な要素は末端のワーカーがコンピューターベースのルールに基づいた作業を行うことです。ベトナムは安価な人件費を提供し、労働力の習熟度が高いため、大量生産に適しています。また、日本との文化的類似性や日本語の理解により、コミュニケーションがスムーズに行われます。これらの要素により、ベトナムはBPOにおける優れた選択肢となっています。

ベトナムのBPOのマネジメントと技術力はこなれてきている

BPOプロジェクトにおいては、マネジメントと技術力の確保が重要です。ベトナムはこれらの点においても成熟しています。効率的なプロジェクトマネジメントを行うことで、タグ付けやデータ整理などの作業が円滑に進行します。また、BPOにおいて必要なコンピューター作業に対するリテラシーも高く、新しい技術分野にも積極的に対応しています。ベトナムの成長に伴い、BPOの品質と効率は更なる向上が期待されます。

BPOにおけるコミュニケーターの重要性

BPOのプロジェクトには、ルールやマニュアルを作成する段階でコミュニケーターが重要な役割を果たします。ルールの策定には様々な要素が考慮される必要があり、ベトナム側からのフィードバックも重要です。コミュニケーターは日本とベトナムの文化や言語の違いを理解し、円滑なコミュニケーションを図ることで、プロジェクトの成果物の品質向上に寄与します。

AIでのコスト優位性の確保のための戦略的投資

AI技術の製品化において、BPO部分のコストダウンが重要な課題となります。ベトナムに安定したAIのためのBPO作業をオフショアにすることで、コストセンターの効率化を図ることができます。将来的にAI技術はますます製品化が進み、BPOの需要も増加することが予想されます。そうした中で、ベトナムのアドバンテージを活かした戦略的な投資により、ソフトウェア開発企業のマネージャは競争力を強化し、成功につなげることができるでしょう。

続きを見る >

2025年AI活用トレンド

2025年のAI活用

2025年は企業におけるAI活用が実証実験から本格導入へと移行する転換期となっている。生成AI市場は急速な拡大を続けており、専門人材の不足を補うソリューションとして中堅企業にも急速に普及が進んでいる。大手企業では数百億円規模の投資計画が発表され、業務効率化だけでなく新規事業創出への期待も高まっている。本記事では、2025年に押さえておくべきAI活用の主要トレンドを解説する。

自律型AIエージェントの台頭

2025年の最大のトレンドは「AIエージェント」の台頭である。エージェント型AIは、ユーザーが設定した目標に向けて自律的に計画を立て行動する新しいAIシステムであり、従来のAIアシスタントとは異なり人間からの直接的な指示がなくても主体性を持って行動できる点が特徴である。また、画像、音声、テキストを統合的に処理するマルチモーダル技術の進化により、業務プロセスは新たな段階へと移行している。複数の情報形式を同時に分析することで、これまで見えなかった相関関係の発見が可能となり、意思決定の精度向上に貢献している。

成功と失敗の分岐点

一方で、AI導入には課題も存在する。2024年の実績から、導入効果に大きな差が生じていることも明らかになってきた。成功企業と失敗企業の分岐点として、経営層のコミットメント、段階的な展開計画、現場との密な連携が挙げられている。さらにAIの過剰な期待の時代から、AIの成果が問われる時代へと移行しており、企業は投資から明確で測定可能な価値を生み出す準備が求められている。加えて、AIガバナンスと偽情報対策の重要性も増しており、AIの責任ある活用と安全な運用が求められている。セキュリティリスクへの対応も含め、戦略的なAI導入計画の策定が不可欠となっている。

段階的導入の重要性

AI活用を成功させるためには、いきなり大規模導入を目指すのではなく、自社の課題を正確に把握した上で小規模な実証実験から始めることが推奨される。成功企業に共通するのは、経営層の強いコミットメント、段階的な展開計画、そして現場との密な連携である。特に重要なのは、AIを単なるツールとしてではなく、業務プロセス全体を見直す契機として捉えることである。現場の声を反映しながら、継続的な改善サイクルを回すことで、投資対効果を最大化できる。外部の専門家による伴走支援を受けながら、自社に最適なAI活用戦略を構築していくことが成功への近道となるであろう。

まとめ

2025年のAI活用は、AIエージェントやマルチモーダル技術の進化により大きな転換期を迎えている。しかし、成果を出すためには段階的な導入計画と現場との連携が不可欠である。ROIの実証やガバナンス体制の構築も含め、戦略的なアプローチでAI活用を推進していくことが求められている。

続きを見る >