フルスクラッチは体力

開発手法の選択

フルスクラッチかパッケージか、最近ではSaaSなどもシステム構築の検討に入る。実は開発手法やツールよりも、どのようなシステムで、どれくらいの規模のシステム開発会社が担当するかが重要である。

SESのリスク

人数が多い会社であればあるほど安心感があってよいと安易に考えることは適切ではない。なぜなら、SE派遣やSESと呼ばれる人月(人工)単位で売り上げの経つ会社には技術の総合力がないからである。

技術の総合力

技術の総合力とは、SE作業やプログラミング作業などの1人で対応できる技術力を差すのではなく、システム構築やシステムの運用全般における最適手段を考えることができる能力のことである。

表層の即効性

SE派遣やSESの付加価値はその人単体のプログラミング能力に偏るため、一見対応がよく、何も問題がないように思える。しかし、これが技術的負債を作ってしまうひとつの要因でもある。

まとめ

フルスクラッチを考えるなら、SESを中心としないシステム会社で且つ人数規模も多い方がよい。安価にフルスクラッチでシステムを構築してしまうと、メンテナンスや運用でしっぺ返しが待っている。時間が経つごとにシステム保守費用が高くなるのである。

関連記事

開発費用値下げの危険性

開発手法の選択基準

大がかりなシステム開発においては、ウォーターフォールモデルという開発手法がとられ、設計書などのドキュメント類も整理してから、プログラミングへ着手する。逆に中小規模なシステム開発においては、アジャイル開発と呼ばれ、プログラミングをしながらシステム開発が進められたり、ドキュメント類は簡易にして、プログラミング工程へ着手するといった方法がとられる。状況に応じて開発手法は使い分ける必要がある。

設計書の必要と課題

建築では図面なく建物を建てることはないが、中小規模のシステムについては簡単な概要だけでシステムの開発ができてしまう。もちろん設計書をしっかりと書いて、要件を詰めてシステム開発を進めることができれば、トラブルもなくていいのではないかと言われる。しかし、設計書を作成するにはシステムをプログラミングすることと同じくらい費用が掛かる。

設計書の粒度と要因

中小規模のシステム開発において設計書が簡易になってしまう理由は、ユーザー側や発注側の予算が乏しいという理由がある。建築のパターンの場合は、法律によって作成しなければならない図面や、施主から同意をもらうべき書類などが決められている。システム開発には法的に作成しなければならない書類が明確にされているわけではないため、この粒度が各社・各エンジニアによりバラツキが発生する。

文書管理の現状

中小規模のシステム開発において、最悪の場合は設計書がないケースもある。小さなプロジェクトの場合は予算も少なく特にドキュメント類がないが多くある。あるいは、システムはアップデートされ続けているのにドキュメントはアップデートされていなかったり、ひどい場合にはシステム保守ベンダーが紛失している場合もある。

まとめ

システム開発に時間がかかる理由は、設計書から作成することでプログラミング作業の2倍以上の時間がかかると言われる。いわゆる動作検証の工程まで入れるとプログラミング作業の3倍程度は時間がかかる。また、システム開発はほとんどが人件費である場合が多く、かかる時間に応じて費用が上がる。つまり、非エンジニアが単純に開発費用を値切ると、プログラミング以外の重要な情報を削っていくことになる。

続きを見る >

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >

DX失敗企業の共通点

DX推進の落とし穴

デジタルトランスフォーメーション(DX)に取り組む企業が増える一方で、期待した成果を得られずに頓挫するケースが後を絶たない。経済産業省の調査でも、DXに成功したと実感している企業はわずか数パーセントに留まっている。なぜ多くの企業がDXで失敗してしまうのか。本記事では、失敗する会社に共通する特徴を分析し、成功へ導くための視点を紹介する。

失敗企業の共通点

DXが失敗する会社には、いくつかの共通点がある。第一に「目的の不明確さ」である。ツール導入そのものが目的化し、何を解決したいのかが曖昧なまま進めてしまう。第二に「経営層の関与不足」が挙げられる。DXは全社的な変革であり、現場任せでは推進力が生まれない。第三に「現場との乖離」である。実際に業務を担う社員の声を聞かず、使われないシステムが構築されるケースが多発している。これらの問題は単独ではなく、複合的に絡み合って失敗を引き起こす。

成功企業の原則

では、成功している企業は何が違うのか。成功企業に共通するのは「ビジネス課題起点の発想」である。まず解決すべき経営課題を明確にし、その手段としてデジタル技術を選定する。また、経営者自身がDXの旗振り役となり、変革の必要性を全社に浸透させている。さらに重要なのが「スモールスタート」の姿勢である。最初から大規模なシステム刷新を狙うのではなく、小さな成功体験を積み重ねることで社内の理解と協力を得ていく。加えて、外部パートナーを活用して専門知識を補い、客観的な視点で推進状況を評価する仕組みを持っている。

成功は準備次第

DXの成否は、取り組む前の「準備」で大きく左右される。自社の現状を正しく把握し、何のためにDXを行うのかという目的を明文化することが第一歩である。その上で、経営層から現場まで一貫したビジョンを共有し、段階的に進める計画を立てるべきだ。失敗を恐れて動かないことが最大のリスクである。しかし、闇雲に進めても成果は出ない。重要なのは、正しい方向性を持って着実に歩みを進めることである。自社だけで判断が難しい場合は、DX推進の実績を持つ専門家の力を借りることも有効な選択肢となる。

まとめ

DXが失敗する会社には、目的の不明確さ、経営層の関与不足、現場との乖離という共通点がある。成功するためには、ビジネス課題を起点とした発想、経営者主導の推進体制、スモールスタートによる段階的な取り組みが不可欠である。正しい準備と専門家の支援を活用し、着実なDX推進を目指すべきだ。

続きを見る >