DX前の業務整理

DX推進の落とし穴

多くの企業がDX推進を急ぐあまり、業務改善ツールやシステムの導入を最優先にしてしまう傾向がある。しかし、現状の業務プロセスを整理しないままツールを導入することは、非効率な作業をそのままデジタル化するだけに終わる危険性がある。DXの本質は単なるIT化ではなく、業務そのものの変革にある。

非効率のデジタル化の罠

いきなりツールを導入すると、既存の非効率な業務フローがそのままシステムに組み込まれてしまう。例えば、不要な承認プロセスや重複した作業がデジタル上で再現され、かえって業務が複雑化するケースも少なくない。また、現場の実態に合わないツールを選定してしまい、導入後に使われなくなるという失敗も頻発している。結果として、多大なコストと時間を費やしながら、期待した効果を得られないまま頓挫するプロジェクトが後を絶たない。

業務可視化から始めるDX

DXを成功させるためには、ツール導入の前に徹底した業務整理が不可欠である。まず、現在の業務フローを可視化し、各プロセスの目的と必要性を検証する。次に、重複作業や不要な承認ステップを洗い出し、業務そのものをシンプルにする。この段階で「なぜこの作業をしているのか」を問い直すことが重要である。形骸化したルールや慣習的に続けてきた作業を見直すことで、本当に必要な業務が明確になる。整理された業務プロセスに対して最適なツールを選定することで、初めてDXの効果を最大化できる。

業務整理の成果

業務整理を先行させることで、ツール導入の目的が明確になり、適切な選定が可能になる。整理された業務フローは現場の理解も得やすく、ツールの定着率も大幅に向上する。さらに、業務整理の過程で発見された課題は、DXだけでなく組織全体の改善にもつながる。属人化していた業務の標準化や、部門間の連携強化など、副次的な効果も期待できる。DXは一度きりのプロジェクトではなく、継続的な改善活動である。まず業務を整理し、その上でツールを活用するという順序を守ることが、持続可能なDX推進の鍵となる。

まとめ

DX成功の鍵は、ツール導入前の業務整理にある。非効率な業務をそのままデジタル化しても効果は得られない。まず業務フローを可視化し、不要なプロセスを排除してから最適なツールを選定することで、DXの本来の効果を発揮できる。

関連記事

Power Platform導入の注意点

業務変革の実現

Microsoft Power Platformは、Power BI、Power Apps、Power Automate、Power Pagesなどの複数のサービスで構成される統合プラットフォームである。ローコード・ノーコードでアプリ開発やデータ分析、業務自動化が可能になり、企業のDX推進において重要な役割を果たしている。専門的なプログラミング知識がなくても、業務担当者が直接システムを構築できる革新的なソリューションとして注目されている。

導入前の課題

Power Platform導入を成功させるには、事前の課題整理が不可欠である。まず組織内のITリテラシーレベルを把握し、適切な教育体制を構築する必要がある。また、既存システムとの連携方法や、データガバナンスの方針を明確にしておくことも重要である。さらに、開発したアプリやフローの管理・運用体制、セキュリティポリシーの策定、ライセンス管理の仕組みも事前に検討しておく必要がある。これらの準備不足は導入後の混乱を招く可能性がある。

セキュリティリスク

Power Platformの手軽さは、一方で「野良アプリ」や「シャドーIT」のリスクを生み出す。業務担当者が独自にアプリを開発し、適切な管理なしに運用されるケースが増加している。これにより、機密データの不適切な取り扱いや、セキュリティホールの発生、システム全体の統制が取れなくなる問題が生じる。また、外部サービスとの不適切な連携により、データ漏洩のリスクも高まる。組織全体でのガバナンス体制確立と、定期的な監査・レビューの仕組みが必要不可欠である。適切なアクセス権限管理とデータ分類も重要な対策となる。

成功の戦略

Power Platform導入を成功させるには、段階的なアプローチが効果的である。まず小規模なパイロットプロジェクトから始め、成功事例を積み重ねながら組織全体への展開を図る。この過程で、社内のベストプラクティスを蓄積し、標準化されたテンプレートやガイドラインを整備することが重要である。また、継続的な教育プログラムの実施、専門チームによるサポート体制の構築、定期的な効果測定と改善サイクルの確立も欠かせない。技術的な側面だけでなく、組織文化の変革も視野に入れた長期的な取り組みが成功の鍵となる。

まとめ

Power Platform導入は大きな可能性を秘めているが、適切な準備と計画なしには失敗のリスクも高まる。セキュリティとガバナンスの確立、段階的な導入アプローチ、継続的な教育と改善が成功の要件である。組織全体での取り組みが不可欠である。

続きを見る >

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >

オオカミ少年化の弊害

SE常駐の負連鎖

システム開発会社側の立場からすると、時間ばかり取るよくないクライアントはできるだけ減らさないと、他の優良クライアントに迷惑がかかる。特に横にいてくれないと進めることができないというニーズが、SE常駐の常態化してしまっている要因である。

常駐要請の心理

SEへの安心感の欠如が常駐しないといけない理由のひとつである。隣にいれば、何かあった時にすぐに指示が出せる。たとえば、サーバが止まったときにすぐに復旧させることが可能である。

対症療法の克服

隣にSEを常駐させて対応できてしまうがゆえに対処療法になってしまいがちである。本来であれば、サーバが止まらないようにすべきであり、リカバリのプランがしっかりと計画されていることが理想である。

脱属人化の施策

SE側も、すぐに復旧させられるからといった怠慢により、事前に問題や対策を考えておくといった準備を怠ってしまう。そう考えると、発注側のITリテラシーも非常に重要である。属人化しないように仕組化するにはどうするかを常に整理する意識を持つことが大切である。

まとめ

発注側は感情だけでプロジェクトを遂行すると、何かあった時に何でもSEを急かしてしまう。これによって、発注側はオオカミ少年化してしまうため、本当に急がないといけないときに対応が遅れてしまうのである。

続きを見る >