ローコード開発とAI活用

AIとローコードの融合

ローコード開発プラットフォームの普及により、非エンジニアでもアプリケーション開発が可能になった現在、生成AIの活用が大きな注目を集めている。ChatGPTやCopilotなどのAIツールを組み合わせることで、開発スピードがさらに向上すると期待されているが、本当にすべてのローコード開発にAIが必要なのだろうか。コスト、品質、保守性など多角的な視点から、AI導入の真の価値を見極めることが、企業のDX戦略において極めて重要になっている。

コード生成の現実

生成AIによるコード生成は確かに魅力的だが、実際の品質には課題がある。AIが生成するコードは、単純な処理であれば高品質だが、複雑なビジネスロジックや例外処理が絡むと、不完全なコードが生成されることが少なくない。さらに深刻な問題は要件定義の壁である。AIは与えられたプロンプトに基づいてコードを生成するが、曖昧な要件や暗黙の前提条件を正確に理解することは困難である。結果として、開発者は生成されたコードを詳細に検証し、修正する必要があり、期待したほどの効率化が実現しないケースも多く見られる。

保守性のコスト

AIを活用したローコード開発において、最も見落とされがちなのが保守性の課題である。AI生成コードは、その時点では動作しても、後から読み解くことが困難な構造になっていることがある。変数名が不適切だったり、処理の意図が不明瞭だったりすると、半年後に修正が必要になった際、開発担当者が変わっていた場合、大きな手戻りが発生する。また、AIツールのバージョンアップや仕様変更により、過去に生成されたコードとの互換性が失われるリスクも存在する。初期開発のスピードを重視するあまり、長期的な運用コストが膨らんでしまっては本末転倒である。真のDX推進には、目先の効率化だけでなく、持続可能な開発体制の構築が不可欠なのである。

適切な見極め

ローコード開発におけるAI活用は、すべてのケースで必須というわけではない。定型的な画面開発や単純なCRUD操作など、パターン化された開発にはAIが有効だが、複雑なビジネスロジックや高度なセキュリティが要求される領域では、人間による丁寧な設計と実装が重要である。重要なのは、プロジェクトの性質、チームのスキルレベル、長期的な保守計画を考慮した上で、AIを活用すべき領域と従来手法を維持すべき領域を明確に区分することである。段階的にAIツールを導入し、効果を検証しながら適用範囲を拡大していく慎重なアプローチが、失敗リスクを最小限に抑え、真の生産性向上につながる。

まとめ

ローコード開発へのAI導入は、万能の解決策ではなく、適材適所で活用すべきツールである。コード生成の質、要件定義の難しさ、保守性の課題を十分に理解した上で、自社の開発体制に合った形でAIを取り入れることが成功の鍵となる。短期的な効率化だけでなく、長期的な運用まで見据えた戦略的な判断が求められている。

関連記事

Power Appsで簡単に業務改善

システム開発の高コストと複雑化

多くの企業では、情報システム部門や外部システム会社にシステム開発を依頼すると、仕様確認が繰り返される。「この機能はどうするか?」「ステータスはこれで全てか?」など、質問が多く、時間とコストが増大。結果、システムは複雑化し、現場のニーズに即したシンプルな解決策から遠ざかる。

野良プログラムのリスク

システム開発の手間を避けるため、各部署でExcelマクロによる「野良プログラム」が横行する。これらは各人のPCに保存され、最新版の確認が困難になり、メンテナンスも不透明。担当者がいなくなるとブラックボックス化し、セキュリティリスクも増加。放置すれば、企業全体の業務効率が低下し、情報漏洩の危険もある。

Power Appsで迅速なシステム構築

こうした問題を解決するのが、MicrosoftのPower Appsだ。従来の複雑な開発プロセスを排除し、現場担当者が自らアプリを構築できる。ドラッグ&ドロップで簡単に操作でき、セキュリティもMicrosoft標準に準拠。野良プログラムの乱立を防ぎ、システム管理とメンテナンスも容易になる。さらに、ユーザー自身がアプリを修正できるため、柔軟性も確保できる。

定量化困難な業務もデジタル化

業務のデジタル化は、数値で説明可能なタスクは簡単だが、現場には「説明しにくい」業務も多い。こうした業務は経験に依存しがちで、担当者に頼ることが多い。Power Appsは、このような曖昧な業務も迅速にアプリ化し、標準化と効率化を同時に実現する。

まとめ

Power Appsは、現場主導でアプリを作成・管理できる柔軟性を提供し、野良プログラムのリスクも解消する。複雑な開発プロセスを省き、数値化しにくい業務も効率的にデジタル化することができる。

続きを見る >

小規模AI導入ガイド

効果検証から始める

多くの人は、試しにAIを導入してみて、効果を見てから予算取りを行っていきたいと考えている。とりあえずツールを導入したいといった理由では、なかなか費用を使っていいとはならないだろう。このような慎重なアプローチは非常に理にかなっており、実際の効果を数値で示すことができれば、その後の本格的な導入に向けた予算確保もスムーズに進むはずだ。まずは小さく始めて、確実な成果を積み重ねることが重要になってくる。

UI重視の効果測定

AIの効果を確認してから検討することを考えたときに最初にやることは、実はUI(ユーザーインターフェース)の部分である。例えば、グラフの表示などだ。結果として何ができれば、どういった業務がどれくらい短縮されるのかを第三者が見ても確認しやすいからだ。データの可視化により、AI導入前後の変化を明確に示すことができれば、関係者全員が効果を実感できる。特に経営陣への報告時には、視覚的に分かりやすい資料があることで、プロジェクトの価値を効果的に伝えることが可能になる。

開発とAIの分離問題

UIを作るとなると、結局はシステムの開発が必要になってしまうのではないかという懸念が生まれる。あるいは、システム開発を行うことで、そもそも期待したAIの活用がなされなくなってしまったりすることもあるだろう。これは、目的をシステム開発とAIとに分けているからだ。本来であればAI活用による業務改善が目標であったにも関わらず、システム開発が主目的となってしまい、AI機能が後回しになってしまうケースも少なくない。このような本末転倒を避けるためには、プロジェクトの優先順位を明確にすることが不可欠だ。

統合的アプローチの重要性

AIはAIの会社に発注する、UIはシステム開発会社に発注するといった、区分けをしてしまうことに誤りがある。まず、やるべきことを分解するのではなく、ITに対する知見のある人に区分けから入ってもらい、技術的な判断も行いつつKPIを作っていくことが重要になる。これは市民開発と呼ばれるものに近く、自社内でローコードを使って軽く開発することを意味する。技術的な専門知識を持つ人材が全体を俯瞰し、最適な技術選択とプロジェクト設計を行うことで、効率的かつ効果的なAI導入が実現できるのだ。

まとめ

部署やグループを横断した視点を持つことがとても大切であることがわかった。ツールや部分的な技術を目的としてしまう前に適した組織体であることの確認が大切だ。AI導入を成功させるためには、技術面だけでなく組織運営の観点からも準備を整える必要がある。

続きを見る >

モックアップの料金

要件定義の意義

ユーザーの要件を明確にすることで、開発の方向性がブレず、無駄な修正や手戻りを防ぐことができる。定期的なミーティングやレビューセッションを通じて、開発者はユーザーのニーズを正確に把握し、ドキュメント化やモックアップ化することが重要である。

試作品の価値

SEはユーザーに具体的なイメージを持ってもらうために、プロトタイプやモックアップを作成し、ユーザーに確認してもらうことで、誤解や認識のズレを減らす。これにより、実装後の大幅な変更を回避できる。

モックアップの功罪

モックアップの作成は有料であることが多いようである。また、非エンジニアがシステム技術を意識しないモックアップであれば、その後の開発が複雑になってしまうといったことも考えられる。

ユーザー主導開発

モックアップを用いてユーザーがシステムの機能や開発プロセスについて理解を深めることで、適切なフィードバックを提供することが大切である。開発チームとのコミュニケーションも円滑になり、無駄な手戻りや修正を減少する。

まとめ

システム開発におけるユーザーと開発チームのコミュニケーション改善が、システム開発コストを軽減する。そのためには視覚的にコミュニケーションできるモックアップは重要であろう。

続きを見る >