ノウハウはタダじゃない

IT導入の難しさ

IT導入では、どの程度のコストをかけるべきか、その費用がどのように効果を生むかの判断が難しい場面が多い。正解が存在しないため、常に試行錯誤が伴うのが実情である。導入後も改善や調整が続き、理想の形を追い求めて進化し続ける必要がある。これこそが、IT導入のハードルを高める最大の要因である。

「導入=完成」の落とし穴

「導入すれば終わり」と考えると、ITプロジェクトは失敗しやすくなる。IT導入には明確なゴールがないため、段階的なチェックポイントの設計が重要となる。導入途中で要件が変化することも少なくないが、それを「失敗」とみなすのではなく、「成功への第一歩」と捉えるべきである。柔軟な対応と継続的な見直しこそが、成果につながる道である。

見積もりが難しい理由

目に見えるモノを作る場合とは異なり、ITシステムの見積もりには高い不確実性が伴う。業務の関連性、将来的な拡張性、外部環境の変化など、検討すべき要素は無数に存在する。したがって、本格的なIT導入には、実際の開発にかかる時間の2倍ほどの準備期間を設ける覚悟が必要である。余裕を持つことが、後のトラブル回避にも直結する。

DXがカオスになる訳

システム構築やDXのプロジェクトは、時間の経過とともに当初の目的を見失いやすい。最初に定めた要件が現場の混乱の中で忘れ去られ、後から新たな要求が持ち込まれることで、プロジェクトが迷走していく。現場も対応に追われ、全体が混沌としていく。こうした事態を避けるには、目的の定期的な再確認と明確な進行管理が不可欠である。

まとめ

ITに苦手意識があるからといって「なんとかしてくれ」と丸投げする姿勢では、プロジェクトは成功しない。目的や進捗のチェックポイントといった、数値化できないノウハウの積み重ねこそが、成功への鍵となる。

関連記事

熱意の共有

提案と負担

「なぜ、自社のシステム担当者や社外から常駐するSEは、システムの改善提案をしてくれないのだろう?」と思うことはないか。それは、提案することで自分が大変になってしまうことを理解しているからである。

現状維持の理

自分たちが大変になるだけであるため、普通に考えれば、それを「やろう」と思うはずがない。それがシステム担当者から提案が出てこない理由であろう。

知と意欲

そうなると、非エンジニアやシステム営業が発想する提案は、システムの要件や縛りを無視した案になってしまう。問題解決意欲の高い非エンジニアが指揮するシステム開発を成功させるには、同じ温度感を持つエンジニアを味方につけるほかない。

人材の見極め

システム担当として向いている人材を探すことは非常に困難である。仮に全社的な問題解決意欲の高いエンジニアを採用したとしても、本当のスキルがどの程度であるか知ることができない。システムの開発のほとんどは巻き戻すことができないからである。

まとめ

システム開発や運用の大変さを知る人材ほど、モチベーションがない限り全力を出し切らせるには、相当の熱量を伝えることが肝要である。

続きを見る >

小規模AI導入ガイド

効果検証から始める

多くの人は、試しにAIを導入してみて、効果を見てから予算取りを行っていきたいと考えている。とりあえずツールを導入したいといった理由では、なかなか費用を使っていいとはならないだろう。このような慎重なアプローチは非常に理にかなっており、実際の効果を数値で示すことができれば、その後の本格的な導入に向けた予算確保もスムーズに進むはずだ。まずは小さく始めて、確実な成果を積み重ねることが重要になってくる。

UI重視の効果測定

AIの効果を確認してから検討することを考えたときに最初にやることは、実はUI(ユーザーインターフェース)の部分である。例えば、グラフの表示などだ。結果として何ができれば、どういった業務がどれくらい短縮されるのかを第三者が見ても確認しやすいからだ。データの可視化により、AI導入前後の変化を明確に示すことができれば、関係者全員が効果を実感できる。特に経営陣への報告時には、視覚的に分かりやすい資料があることで、プロジェクトの価値を効果的に伝えることが可能になる。

開発とAIの分離問題

UIを作るとなると、結局はシステムの開発が必要になってしまうのではないかという懸念が生まれる。あるいは、システム開発を行うことで、そもそも期待したAIの活用がなされなくなってしまったりすることもあるだろう。これは、目的をシステム開発とAIとに分けているからだ。本来であればAI活用による業務改善が目標であったにも関わらず、システム開発が主目的となってしまい、AI機能が後回しになってしまうケースも少なくない。このような本末転倒を避けるためには、プロジェクトの優先順位を明確にすることが不可欠だ。

統合的アプローチの重要性

AIはAIの会社に発注する、UIはシステム開発会社に発注するといった、区分けをしてしまうことに誤りがある。まず、やるべきことを分解するのではなく、ITに対する知見のある人に区分けから入ってもらい、技術的な判断も行いつつKPIを作っていくことが重要になる。これは市民開発と呼ばれるものに近く、自社内でローコードを使って軽く開発することを意味する。技術的な専門知識を持つ人材が全体を俯瞰し、最適な技術選択とプロジェクト設計を行うことで、効率的かつ効果的なAI導入が実現できるのだ。

まとめ

部署やグループを横断した視点を持つことがとても大切であることがわかった。ツールや部分的な技術を目的としてしまう前に適した組織体であることの確認が大切だ。AI導入を成功させるためには、技術面だけでなく組織運営の観点からも準備を整える必要がある。

続きを見る >

AIの教師モデル開発や画像のタグ付けを目的としたBPO的なプロジェクトにはベトナムオフショアが向いている理由

AI教師モデルにおけるBPOの重要性

AI技術の急速な進化により、教師モデルの構築が重要視されています。テキスト型のAIだけでなく、画像認識などの領域でも教師モデルの役割は増大しています。これらのモデルの開発には人手によるタグ付けや手作業が不可欠です。こうした教師モデルのプロジェクトをBPO(ビジネス・プロセス・アウトソーシング)としてオフショアに委託することで、労働力の確保とコスト効率の向上を図ることが可能です。

ベトナムのBPOにおけるアドバンテージ

ベトナムはBPOプロジェクトにおいて、他の国に比べてアドバンテージを持っています。BPOの重要な要素は末端のワーカーがコンピューターベースのルールに基づいた作業を行うことです。ベトナムは安価な人件費を提供し、労働力の習熟度が高いため、大量生産に適しています。また、日本との文化的類似性や日本語の理解により、コミュニケーションがスムーズに行われます。これらの要素により、ベトナムはBPOにおける優れた選択肢となっています。

ベトナムのBPOのマネジメントと技術力はこなれてきている

BPOプロジェクトにおいては、マネジメントと技術力の確保が重要です。ベトナムはこれらの点においても成熟しています。効率的なプロジェクトマネジメントを行うことで、タグ付けやデータ整理などの作業が円滑に進行します。また、BPOにおいて必要なコンピューター作業に対するリテラシーも高く、新しい技術分野にも積極的に対応しています。ベトナムの成長に伴い、BPOの品質と効率は更なる向上が期待されます。

BPOにおけるコミュニケーターの重要性

BPOのプロジェクトには、ルールやマニュアルを作成する段階でコミュニケーターが重要な役割を果たします。ルールの策定には様々な要素が考慮される必要があり、ベトナム側からのフィードバックも重要です。コミュニケーターは日本とベトナムの文化や言語の違いを理解し、円滑なコミュニケーションを図ることで、プロジェクトの成果物の品質向上に寄与します。

AIでのコスト優位性の確保のための戦略的投資

AI技術の製品化において、BPO部分のコストダウンが重要な課題となります。ベトナムに安定したAIのためのBPO作業をオフショアにすることで、コストセンターの効率化を図ることができます。将来的にAI技術はますます製品化が進み、BPOの需要も増加することが予想されます。そうした中で、ベトナムのアドバンテージを活かした戦略的な投資により、ソフトウェア開発企業のマネージャは競争力を強化し、成功につなげることができるでしょう。

続きを見る >