生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

関連記事

システム開発の混迷

営業依存の弊害

業務システムがうまくいかないのはベンダーやSEの問題だけではない。SEを取り巻く環境もシステム開発には重要である。業務システム開発を依頼するベンダーであれば営業担当者が挟まる。日本の縦割り社会の中で営業担当者は非エンジニアである場合が多く、プロジェクトの成功が目的ではない場合がある。

役割の細分化

SEをプロジェクトマネージャーとしている場合も注意が必要である。日本ではシステムエンジニアは細分化されておらず、建築でいうと参加者の全員が職人という扱いであることが多い。システムに関わる人全員がSEとしてしまっている間違いである。

開発の本質

SEやベンダーのプロジェクトマネージャーはそれ自体がプロジェクトと考えていることも多く、ビジネスとしてのプロジェクトとして捉えることができていないことがある。本来はビジネスが中心にあって、その中に業務システムが位置するはずである。それが見えているか否かで、業務システム開発の成功の確率は変わるのである。

相互理解

逆に、システムのことはSEに任せているというような場合も注意が必要である。システムのプロジェクトを経験したことがある、というだけでは、システムに関連するプロジェクトを成功させるのは困難である可能性が高い。プログラミングの経験がなければ、SEやベンダーが持つ心境を察することができないからである。最も重要なことはシステム導入時のイメージである。

まとめ

欧米では当たり前のように、間接的に関与する売上や利益の向上を管掌する部門や役職があるが、日本では良くも悪くもロジカルであり、数字がなければ行動に移せない厳密なルールがある。

続きを見る >

ローコードとは何か

ローコード開発の基本

ローコード開発とは、従来のプログラミングで必要だった複雑なコード記述を大幅に削減し、視覚的なインターフェースを使ってアプリケーションを構築する開発手法である。ドラッグ&ドロップや設定画面を使って、まるでパズルのピースを組み合わせるように機能を実装できる。これにより、プログラミング経験が少ない人でも短期間でアプリケーションを作成することが可能になった。従来なら数か月かかっていた開発が、数週間で完成することも珍しくない。

注目される背景

現代企業が直面するデジタル変革(DX)の波により、業務システムの迅速な構築・改善が求められている。しかし、IT人材不足は深刻化しており、従来の開発手法では変化の速いビジネス要求に対応しきれない。また、コロナ禍を経てリモートワークが普及し、業務プロセスのデジタル化が急務となった。こうした背景から、非IT部門でもシステム開発に参加できるローコード開発が注目を集めている。市民開発者と呼ばれる現場担当者が直接システムを構築することで、真にビジネスニーズに合致したソリューションを素早く提供できるのである。

具体的なメリット

ローコード開発の最大のメリットは開発スピードの圧倒的な向上である。従来の開発では要件定義から運用まで半年以上かかっていたプロジェクトが、1〜2か月で完成する。また、専門的なプログラマーを雇用する必要がないため、人件費を大幅に削減できる。さらに、ビジネス要求の変化に応じて素早く修正・拡張が可能で、従来のシステムのように大規模な改修を必要としない。ユーザー自身が開発に関わることで、仕様の齟齬が生じにくく、より実用的なシステムが構築できる点も大きな魅力である。運用保守も簡単で、長期的なTCO削減にも貢献する。

導入時の注意点

ローコード開発を成功させるには、適切な用途の見極めが重要である。単純な業務アプリケーションや社内システムには最適だが、高度な処理や複雑なアルゴリズムが必要なシステムには向かない。また、開発者のスキルレベルに応じた段階的な導入が必要で、いきなり複雑なシステムから始めると失敗リスクが高まる。セキュリティやガバナンスの観点から、適切な開発ルールやレビュープロセスの確立も欠かせない。さらに、従来のIT部門との連携体制を構築し、技術的なサポート体制を整えることで、より効果的なローコード活用が実現できる。

まとめ

ローコード開発は、DX推進において極めて有効な手段である。開発スピードの向上、コスト削減、そして現場主導でのシステム構築を可能にする。ただし、適切な用途選択と段階的な導入アプローチが成功の鍵となる。企業の競争力向上のため、ローコード活用を検討してみてはいかがだろうか。

続きを見る >

要件定義のアプローチ

要件定義の基本

すべてをシステムで解決してしまおうとする要件定義には注意が必要である。システムの成功の可否は要件定義にかかっていると言っても過言ではない。しかし、十分に要件定義の時間を使ったにも関わらず、ITプロジェクトが失敗することがある。

規模別の要件定義

システム構築の規模によって、要件定義の粒度が変わる。小さなITプロジェクトの場合は要件定義をせずにプロトタイプを作りながらシステム構築を進めるといった方法がある。これをアジャイル開発、プロトタイプ開発と呼ぶ。

要件定義の本質

要件定義の粒度は時間を掛ければ細かくなるわけではない。ユーザー側でも要件定義を進めるにつれて、想定している機能の矛盾点が出てくることがある。この矛盾点を解消していくこと自体を要件定義としてはならない。要件定義はあくまで本質的なコアとなる部分から膨らませることが重要である。

対話型要件定義

要件定義フェーズで失敗するパターンは、ユーザー側との対話ではなく、システム会社側がヒアリングに徹する場合である。ユーザー側はITを利用してどのようなことができるかを知らない可能性が高いため、システム専門家がそれを鵜呑みにした仕様で要件を固めてしまうと、製造工程で無駄な工数が発生し予算をオーバーしてしまうことがある。

まとめ

本質的な要件をコミュニケーションによって、はっきりさせていく作業こそが要件定義と言えるのである。さまざまな視点から何度も繰り返し要件をなぞることで粒度が落ちていき、適切な要件定義書となる。何でもかんでもシステム化せず、オペレーションとの関係性を見合わせながら進めることが望ましい。

続きを見る >