SEのいうバッファとは

バッファの真意

見積りや作業スケジュールに際して、エンジニアやシステム会社から「バッファである」という回答を受けたことはないか。システム会社が言うバッファとは保険を意味していることがほとんどである。

不確実なバッファ

非エンジニアは見積りのバッファを聞いたときに、無駄なのではないかと感じる。「念のため」に必要なバッファは、裏を返すと知識がないから調べないと分からないので不安であるという意味である。知識があり、「念のため」が必要なければバッファはないと考えられる。

知識の不足

ほとんどのシステム構築プロジェクトは、バッファが多いほうが知識がないのに見積りが高くなるという矛盾が発生することになる。そう考えると「バッファ」とは「無駄」に聞こえるかもしれない。

本質のバッファ

さて、このバッファについて本来あるべき姿を説明する。本当にやってみなければ分からないといった高度な技術を使うときに、未知の領域に関するスケジュールの影響を勘案し、計画された期間のことをバッファと見るべきである。

まとめ

単なるシステム構築プロジェクトにおいて「無駄を削ればよい」というのは非エンジニアから見ると合理的でコストの軽減にもなる。しかし、研究開発分野において無駄を削ることは必ずしも合理的ではない。発想が乏しくなるからである。

関連記事

Excel業務のDX化は本当に必要か

DX化の現状

多くの企業でExcel業務のDX化が話題になっている。「Excelは古い」「すぐにシステム化すべき」という声も聞かれるが、本当にすべてのExcel業務をDX化すべきなのだろうか。実は、やみくもなDX化は逆効果になることも少なくない。Excel業務のDX化には正しい順序と判断基準が必要である。本記事では、DX化の利点を理解しながら、適切なアプローチについて考えていく。

DX化の利点

Excel業務をDX化することで得られる利点は確かに多数ある。まず、データの一元管理により情報の正確性が向上し、複数人での同時編集や更新作業がスムーズになる。次に、自動化による作業時間の大幅な削減が可能である。手作業で行っていた集計や転記作業から解放されることで、より付加価値の高い業務に時間を使えるようになる。さらに、データ分析の高度化により、経営判断のスピードと精度が向上する。これらの利点は、企業の競争力強化に直結する重要な要素である。

DX化の落とし穴

しかし、DX化を急ぐあまり失敗するケースも多く見られる。業務フローが整理されていない状態でシステムを導入すると、非効率な業務がそのままシステム化されてしまう。また、現場の声を聞かずにツールを選定すると、使いにくいシステムが現場に定着せず、結局Excelに戻ってしまうこともある。さらに、すべてを一度に変えようとすると、従業員の負担が大きくなり、業務が混乱する。投資したコストに見合う効果が得られず、DX化自体が目的化してしまう危険性もある。適切な準備なしのDX化は、かえって生産性を下げる結果を招くのである。

正しい進め方

Excel業務のDX化を成功させるには、段階的なアプローチが不可欠である。まず、現状の業務フローを可視化し、本当に必要な作業とムダな作業を明確に区別する。次に、Excelで十分な業務と、システム化すべき業務を見極めることが重要である。すべてをシステム化する必要はない。その上で、優先順位をつけて小さく始め、効果を確認しながら展開していく。従業員のITリテラシーに応じた教育も並行して行うことで、スムーズな移行が実現する。DX化は手段であり目的ではない。自社の状況に合わせた最適な方法を選ぶことが、真の業務改善につながるのである。

まとめ

Excel業務のDX化は、正しく進めれば大きな効果をもたらすが、順序を誤ると逆効果になる。利点を理解しつつ、自社の状況を冷静に分析し、段階的に進めることが成功の鍵である。やみくもなシステム化ではなく、業務改善を第一に考えた戦略的なアプローチを取るべきである。

続きを見る >

中小企業のAI活用入門

AI導入の選択肢

近年、AI技術の急速な進化により、大企業だけでなく中小企業にもAI活用の波が押し寄せている。しかし、多くの中小企業経営者は「AIは難しそう」「コストが高い」「専門人材がいない」といった不安を抱えている。実は、現在のAIツールは以前より格段に使いやすく、低コストで導入できるものが増えている。ChatGPTやClaude等の対話型AIから、画像認識、音声認識まで、業務に合わせて選べる選択肢が豊富にある。重要なのは、完璧を求めず、まず小さく始めることだ。

業務効率化の手法

AI活用で最も効果が出やすいのは、定型業務の自動化である。例えば、顧客からの問い合わせ対応にチャットボットを導入すれば、24時間365日の対応が可能になり、スタッフは付加価値の高い業務に集中できる。また、請求書処理や在庫管理にAI-OCRを活用すれば、手入力の時間を大幅に削減できる。ある製造業の中小企業では、品質検査にAI画像認識を導入し、検査時間を70%短縮した。別の小売業では、需要予測AIで在庫の最適化を実現し、廃棄ロスを30%削減した。これらの事例が示すように、AIは確実に業務を変革する力を持っている。

導入の課題と対策

しかし、AI導入には落とし穴もある。最大の失敗要因は「いきなり大規模に導入すること」である。まず現状の業務プロセスを整理し、AIで解決したい具体的な課題を明確にすることが不可欠だ。次に、小規模なパイロットプロジェクトから始め、効果を検証しながら段階的に拡大していくアプローチが成功の鍵となる。また、従業員の不安を解消するため、AIは人の仕事を奪うものではなく、サポートツールであることを丁寧に説明し、研修を実施することも重要である。外部の専門家やコンサルタントの支援を受けることで、自社に最適なAI活用方法を見つけ、導入リスクを最小限に抑えることができる。

実践ステップ

AI活用は、もはや「検討する」段階から「実行する」段階に移っている。競合他社がAIを活用して生産性を向上させる中、導入を先送りすることは競争力の低下を意味する。まずは無料や低価格のAIツールを試し、自社業務への適用可能性を探ることから始めるべきだ。重要なのは、完璧な計画を立てることではなく、小さく始めて学習しながら改善していくことである。社内にAI推進チームを作り、定期的に成果を共有することで、組織全体のAIリテラシーも向上する。今こそ、中小企業がAIの力を借りて飛躍的な成長を遂げるチャンスだ。一歩踏み出すことで、想像以上の変革が待っている。

まとめ

中小企業のAI活用は、もはや特別なことではない。定型業務の自動化から始め、段階的に拡大していくことで、確実に成果を出すことができる。重要なのは、自社の課題を明確にし、適切な支援を受けながら進めることだ。AI導入は投資ではなく、未来への必要な一歩なのである。

続きを見る >

小規模AI導入ガイド

効果検証から始める

多くの人は、試しにAIを導入してみて、効果を見てから予算取りを行っていきたいと考えている。とりあえずツールを導入したいといった理由では、なかなか費用を使っていいとはならないだろう。このような慎重なアプローチは非常に理にかなっており、実際の効果を数値で示すことができれば、その後の本格的な導入に向けた予算確保もスムーズに進むはずだ。まずは小さく始めて、確実な成果を積み重ねることが重要になってくる。

UI重視の効果測定

AIの効果を確認してから検討することを考えたときに最初にやることは、実はUI(ユーザーインターフェース)の部分である。例えば、グラフの表示などだ。結果として何ができれば、どういった業務がどれくらい短縮されるのかを第三者が見ても確認しやすいからだ。データの可視化により、AI導入前後の変化を明確に示すことができれば、関係者全員が効果を実感できる。特に経営陣への報告時には、視覚的に分かりやすい資料があることで、プロジェクトの価値を効果的に伝えることが可能になる。

開発とAIの分離問題

UIを作るとなると、結局はシステムの開発が必要になってしまうのではないかという懸念が生まれる。あるいは、システム開発を行うことで、そもそも期待したAIの活用がなされなくなってしまったりすることもあるだろう。これは、目的をシステム開発とAIとに分けているからだ。本来であればAI活用による業務改善が目標であったにも関わらず、システム開発が主目的となってしまい、AI機能が後回しになってしまうケースも少なくない。このような本末転倒を避けるためには、プロジェクトの優先順位を明確にすることが不可欠だ。

統合的アプローチの重要性

AIはAIの会社に発注する、UIはシステム開発会社に発注するといった、区分けをしてしまうことに誤りがある。まず、やるべきことを分解するのではなく、ITに対する知見のある人に区分けから入ってもらい、技術的な判断も行いつつKPIを作っていくことが重要になる。これは市民開発と呼ばれるものに近く、自社内でローコードを使って軽く開発することを意味する。技術的な専門知識を持つ人材が全体を俯瞰し、最適な技術選択とプロジェクト設計を行うことで、効率的かつ効果的なAI導入が実現できるのだ。

まとめ

部署やグループを横断した視点を持つことがとても大切であることがわかった。ツールや部分的な技術を目的としてしまう前に適した組織体であることの確認が大切だ。AI導入を成功させるためには、技術面だけでなく組織運営の観点からも準備を整える必要がある。

続きを見る >