2025年AI活用トレンド

2025年のAI活用

2025年は企業におけるAI活用が実証実験から本格導入へと移行する転換期となっている。生成AI市場は急速な拡大を続けており、専門人材の不足を補うソリューションとして中堅企業にも急速に普及が進んでいる。大手企業では数百億円規模の投資計画が発表され、業務効率化だけでなく新規事業創出への期待も高まっている。本記事では、2025年に押さえておくべきAI活用の主要トレンドを解説する。

自律型AIエージェントの台頭

2025年の最大のトレンドは「AIエージェント」の台頭である。エージェント型AIは、ユーザーが設定した目標に向けて自律的に計画を立て行動する新しいAIシステムであり、従来のAIアシスタントとは異なり人間からの直接的な指示がなくても主体性を持って行動できる点が特徴である。また、画像、音声、テキストを統合的に処理するマルチモーダル技術の進化により、業務プロセスは新たな段階へと移行している。複数の情報形式を同時に分析することで、これまで見えなかった相関関係の発見が可能となり、意思決定の精度向上に貢献している。

成功と失敗の分岐点

一方で、AI導入には課題も存在する。2024年の実績から、導入効果に大きな差が生じていることも明らかになってきた。成功企業と失敗企業の分岐点として、経営層のコミットメント、段階的な展開計画、現場との密な連携が挙げられている。さらにAIの過剰な期待の時代から、AIの成果が問われる時代へと移行しており、企業は投資から明確で測定可能な価値を生み出す準備が求められている。加えて、AIガバナンスと偽情報対策の重要性も増しており、AIの責任ある活用と安全な運用が求められている。セキュリティリスクへの対応も含め、戦略的なAI導入計画の策定が不可欠となっている。

段階的導入の重要性

AI活用を成功させるためには、いきなり大規模導入を目指すのではなく、自社の課題を正確に把握した上で小規模な実証実験から始めることが推奨される。成功企業に共通するのは、経営層の強いコミットメント、段階的な展開計画、そして現場との密な連携である。特に重要なのは、AIを単なるツールとしてではなく、業務プロセス全体を見直す契機として捉えることである。現場の声を反映しながら、継続的な改善サイクルを回すことで、投資対効果を最大化できる。外部の専門家による伴走支援を受けながら、自社に最適なAI活用戦略を構築していくことが成功への近道となるであろう。

まとめ

2025年のAI活用は、AIエージェントやマルチモーダル技術の進化により大きな転換期を迎えている。しかし、成果を出すためには段階的な導入計画と現場との連携が不可欠である。ROIの実証やガバナンス体制の構築も含め、戦略的なアプローチでAI活用を推進していくことが求められている。

関連記事

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >

中小企業のローコード活用法

ローコードの重要性

中小企業の経営者は、システム開発に数百万円かかると諦めがちである。しかし実際は、ローコード・ノーコードツールの進歩により、従来の1/10のコストと時間でビジネスアプリケーションを構築できる時代となった。大企業のような潤沢なIT予算がなくても、スピーディーで柔軟なシステム開発が可能になったのだ。むしろ、意思決定が早く、組織がフラットな中小企業の方が、ローコードの恩恵を最大限に活用できる環境が整っているといえるだろう。

コスト削減効果

ローコード導入により、中小企業は複数の大きなメリットを享受できる。まず開発コストの大幅削減である。従来のスクラッチ開発では500万円かかっていたシステムが、ローコードなら50万円程度で実現可能となる。次に開発期間の短縮効果も見逃せない。半年かかっていたプロジェクトが1〜2ヶ月で完成し、市場投入スピードが格段に向上する。さらに、専門的なプログラミング知識がなくても、現場の業務を理解している社員が直接システム構築に参加できるため、真にビジネスニーズに合致したアプリケーションが生まれるのである。

成功のポイント

実際にローコード導入で成功を収めた中小企業には共通する特徴がある。第一に、経営層がデジタル変革の重要性を理解し、積極的にサポートしていることだ。トップダウンでの推進により、組織全体の協力を得やすくなる。第二に、小さく始めて段階的に拡大するアプローチを取っていることである。いきなり基幹システムを刷新するのではなく、顧客管理や在庫管理など特定の業務から始めて成功体験を積み重ねている。第三に、社内のキーパーソンをローコード開発の推進役として育成し、継続的な改善サイクルを構築していることが挙げられる。これらの要素が揃うことで、導入効果が最大化されるのだ。

競争優位の実現

ローコードは単なるツールではない。中小企業が大企業と対等に競争できる武器であり、むしろ機動力を活かして大企業を上回る成果を生み出せる可能性を秘めている。従来のシステム開発では不可能だった「現場主導のデジタル化」が実現し、真の意味でのDX推進が可能となる。重要なのは、完璧を求めすぎずに、まず一歩を踏み出すことだ。小さな成功体験から始めて、徐々に範囲を拡大していけば、必ず大きな成果につながる。

まとめ

中小企業にとってローコードは、限られた予算と人材でも効果的なシステム開発を実現できる革新的なソリューションである。コスト削減、開発期間短縮、現場主導の改善という三つの大きなメリットを活用し、段階的なアプローチで導入を進めることが成功の鍵となる。デジタル変革は大企業だけの特権ではないのだ。

続きを見る >

オオカミ少年化の弊害

SE常駐の負連鎖

システム開発会社側の立場からすると、時間ばかり取るよくないクライアントはできるだけ減らさないと、他の優良クライアントに迷惑がかかる。特に横にいてくれないと進めることができないというニーズが、SE常駐の常態化してしまっている要因である。

常駐要請の心理

SEへの安心感の欠如が常駐しないといけない理由のひとつである。隣にいれば、何かあった時にすぐに指示が出せる。たとえば、サーバが止まったときにすぐに復旧させることが可能である。

対症療法の克服

隣にSEを常駐させて対応できてしまうがゆえに対処療法になってしまいがちである。本来であれば、サーバが止まらないようにすべきであり、リカバリのプランがしっかりと計画されていることが理想である。

脱属人化の施策

SE側も、すぐに復旧させられるからといった怠慢により、事前に問題や対策を考えておくといった準備を怠ってしまう。そう考えると、発注側のITリテラシーも非常に重要である。属人化しないように仕組化するにはどうするかを常に整理する意識を持つことが大切である。

まとめ

発注側は感情だけでプロジェクトを遂行すると、何かあった時に何でもSEを急かしてしまう。これによって、発注側はオオカミ少年化してしまうため、本当に急がないといけないときに対応が遅れてしまうのである。

続きを見る >