ノーコード・ローコード比較

新たな開発手法

近年、ビジネスのデジタル化が加速する中で、ノーコード・ローコードツールが注目を集めている。従来のシステム開発では専門的なプログラミング知識が必須だったが、これらのツールを使えば、非エンジニアでも直感的な操作でアプリケーションやWebサイトを構築できる。開発期間の短縮やコスト削減が可能になることから、スタートアップから大企業まで幅広く導入が進んでいる。

主要ツール

ノーコードツールの代表例としては、Webサイト構築に強いBubbleやWebflow、業務アプリ開発に適したKintoneやAppSheet、自動化に特化したZapierなどがある。Bubbleは柔軟性が高く複雑な機能も実装可能だが、学習コストはやや高めである。Webflowはデザイン性に優れ、マーケティングサイトに最適だ。Kintoneはデータベース管理に優れ、日本企業での導入実績が豊富で、承認フローなど日本の業務習慣に対応している。一方、ローコードツールではMicrosoft Power AppsがOffice 365との連携に強く、OutSystemsは大規模エンタープライズ向けで基幹システム開発にも対応可能である。料金体系も月額制からユーザー課金制まで多様で、自社の規模に合わせた選択ができる。

両者の違い

ノーコードとローコードの最大の違いは、カスタマイズ性と技術的な介入度である。ノーコードは完全にコード記述なしで開発できる反面、複雑な要件には対応しきれない場合がある。ローコードは基本的な部分は視覚的に構築しつつ、必要に応じてコードを追加できるため、より高度な機能実装が可能だ。選択時のポイントは、開発したいシステムの複雑さ、既存システムとの連携要件、将来的な拡張性、そして社内の技術リソースである。シンプルな業務アプリならノーコード、基幹システム連携が必要ならローコードが適している。

導入のポイント

ノーコード・ローコードツールの導入を成功させるには、いくつかの注意点がある。まず、無料プランで試用し、実際の業務フローに合うか検証することが重要だ。また、ベンダーロックインのリスクを考慮し、データのエクスポート機能やAPI連携の可否を確認すべきである。セキュリティ要件も見逃せない。特に顧客情報を扱う場合は、各ツールのセキュリティ認証やデータ保存場所を確認する必要がある。さらに、導入後の運用体制も計画的に整備し、社内でのツール活用スキルを育成することが、長期的な成功につながる。

まとめ

ノーコード・ローコードツールは、企業のDX推進を加速させる強力な手段である。適切なツールを選定し、自社の課題に合わせて活用することで、開発コストを抑えながらスピーディーにシステムを構築できる。まずは小規模なプロジェクトから始め、成功体験を積み重ねながら展開していくことを勧める。デジタル化の第一歩として、ぜひ検討すべきだろう。

関連記事

開発費用値下げの危険性

開発手法の選択基準

大がかりなシステム開発においては、ウォーターフォールモデルという開発手法がとられ、設計書などのドキュメント類も整理してから、プログラミングへ着手する。逆に中小規模なシステム開発においては、アジャイル開発と呼ばれ、プログラミングをしながらシステム開発が進められたり、ドキュメント類は簡易にして、プログラミング工程へ着手するといった方法がとられる。状況に応じて開発手法は使い分ける必要がある。

設計書の必要と課題

建築では図面なく建物を建てることはないが、中小規模のシステムについては簡単な概要だけでシステムの開発ができてしまう。もちろん設計書をしっかりと書いて、要件を詰めてシステム開発を進めることができれば、トラブルもなくていいのではないかと言われる。しかし、設計書を作成するにはシステムをプログラミングすることと同じくらい費用が掛かる。

設計書の粒度と要因

中小規模のシステム開発において設計書が簡易になってしまう理由は、ユーザー側や発注側の予算が乏しいという理由がある。建築のパターンの場合は、法律によって作成しなければならない図面や、施主から同意をもらうべき書類などが決められている。システム開発には法的に作成しなければならない書類が明確にされているわけではないため、この粒度が各社・各エンジニアによりバラツキが発生する。

文書管理の現状

中小規模のシステム開発において、最悪の場合は設計書がないケースもある。小さなプロジェクトの場合は予算も少なく特にドキュメント類がないが多くある。あるいは、システムはアップデートされ続けているのにドキュメントはアップデートされていなかったり、ひどい場合にはシステム保守ベンダーが紛失している場合もある。

まとめ

システム開発に時間がかかる理由は、設計書から作成することでプログラミング作業の2倍以上の時間がかかると言われる。いわゆる動作検証の工程まで入れるとプログラミング作業の3倍程度は時間がかかる。また、システム開発はほとんどが人件費である場合が多く、かかる時間に応じて費用が上がる。つまり、非エンジニアが単純に開発費用を値切ると、プログラミング以外の重要な情報を削っていくことになる。

続きを見る >

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >

製造業DX – IoT×ローコード活用法

IoT導入の新時代

製造業の現場では、人手不足や品質管理の課題が深刻化しているが、IoTとローコード技術の組み合わせが解決策として注目されている。従来のシステム開発には高額な費用と長期間を要していたが、ローコードプラットフォームを活用することで、現場の作業者でも直感的にIoTシステムを構築できるようになった。センサーからのデータ収集、機械の稼働状況監視、品質データの自動記録など、これまで手作業で行っていた業務を効率化できる。

ローコード開発の威力

ローコード開発プラットフォームは、プログラミング知識がなくても視覚的な操作でアプリケーションを作成できる革新的な技術である。製造現場の作業者が自分たちのニーズに合わせてリアルタイムでシステムをカスタマイズでき、IT部門への依存を大幅に減らせる。温度センサー、振動センサー、カメラなどのIoTデバイスと連携させることで、設備の予知保全や作業効率の向上を実現できる。従来の開発期間を3分の1に短縮し、コストも大幅に削減できるため、中小企業でも導入しやすくなっている。

成功事例と導入効果

実際の導入事例を見ると、ある自動車部品メーカーでは設備稼働率が15%向上し、品質不良率を30%削減できた。IoTセンサーで機械の振動や温度を常時監視し、異常を検知すると自動でアラートを発信するシステムを構築したのである。また、食品製造業では温度・湿度管理の自動化により、品質検査時間を50%短縮し、人的ミスによる製品廃棄を90%削減した。これらの成果は、現場作業者がローコードツールを使って自ら問題解決に取り組んだ結果であり、外部ベンダーに依存しない持続可能なDX推進を実現している。

未来の製造業像

IoT×ローコード技術は単なるデジタル化を超えて、製造業の競争力を根本的に変革する力を持っている。現場の知見を活かしたシステム構築により、真に使えるDXソリューションが生まれ、継続的な改善サイクルが確立される。今後はAI技術との融合により、さらに高度な予測分析や自動最適化が可能になるだろう。重要なのは小さく始めて段階的に拡張していくアプローチである。まずは一つの工程から始めて成功体験を積み重ね、徐々に全社規模へ展開していくことで、確実にDX効果を実感できる。変化に対応できる柔軟な組織作りこそが成功の鍵となる。

まとめ

IoT×ローコード技術は、製造業DXの民主化を実現する画期的なソリューションである。プログラミング不要で現場主導のシステム構築が可能になり、短期間・低コストでの導入を実現できる。成功事例が示すように、設備稼働率向上、品質改善、作業効率化など具体的な成果が期待できる。重要なのは小さく始めて段階的に拡張するアプローチであり、現場の知見を活かした持続可能なDX推進が可能になる。

続きを見る >