Power Platform導入の注意点

業務変革の実現

Microsoft Power Platformは、Power BI、Power Apps、Power Automate、Power Pagesなどの複数のサービスで構成される統合プラットフォームである。ローコード・ノーコードでアプリ開発やデータ分析、業務自動化が可能になり、企業のDX推進において重要な役割を果たしている。専門的なプログラミング知識がなくても、業務担当者が直接システムを構築できる革新的なソリューションとして注目されている。

導入前の課題

Power Platform導入を成功させるには、事前の課題整理が不可欠である。まず組織内のITリテラシーレベルを把握し、適切な教育体制を構築する必要がある。また、既存システムとの連携方法や、データガバナンスの方針を明確にしておくことも重要である。さらに、開発したアプリやフローの管理・運用体制、セキュリティポリシーの策定、ライセンス管理の仕組みも事前に検討しておく必要がある。これらの準備不足は導入後の混乱を招く可能性がある。

セキュリティリスク

Power Platformの手軽さは、一方で「野良アプリ」や「シャドーIT」のリスクを生み出す。業務担当者が独自にアプリを開発し、適切な管理なしに運用されるケースが増加している。これにより、機密データの不適切な取り扱いや、セキュリティホールの発生、システム全体の統制が取れなくなる問題が生じる。また、外部サービスとの不適切な連携により、データ漏洩のリスクも高まる。組織全体でのガバナンス体制確立と、定期的な監査・レビューの仕組みが必要不可欠である。適切なアクセス権限管理とデータ分類も重要な対策となる。

成功の戦略

Power Platform導入を成功させるには、段階的なアプローチが効果的である。まず小規模なパイロットプロジェクトから始め、成功事例を積み重ねながら組織全体への展開を図る。この過程で、社内のベストプラクティスを蓄積し、標準化されたテンプレートやガイドラインを整備することが重要である。また、継続的な教育プログラムの実施、専門チームによるサポート体制の構築、定期的な効果測定と改善サイクルの確立も欠かせない。技術的な側面だけでなく、組織文化の変革も視野に入れた長期的な取り組みが成功の鍵となる。

まとめ

Power Platform導入は大きな可能性を秘めているが、適切な準備と計画なしには失敗のリスクも高まる。セキュリティとガバナンスの確立、段階的な導入アプローチ、継続的な教育と改善が成功の要件である。組織全体での取り組みが不可欠である。

関連記事

Power Appsで簡単に業務改善

システム開発の高コストと複雑化

多くの企業では、情報システム部門や外部システム会社にシステム開発を依頼すると、仕様確認が繰り返される。「この機能はどうするか?」「ステータスはこれで全てか?」など、質問が多く、時間とコストが増大。結果、システムは複雑化し、現場のニーズに即したシンプルな解決策から遠ざかる。

野良プログラムのリスク

システム開発の手間を避けるため、各部署でExcelマクロによる「野良プログラム」が横行する。これらは各人のPCに保存され、最新版の確認が困難になり、メンテナンスも不透明。担当者がいなくなるとブラックボックス化し、セキュリティリスクも増加。放置すれば、企業全体の業務効率が低下し、情報漏洩の危険もある。

Power Appsで迅速なシステム構築

こうした問題を解決するのが、MicrosoftのPower Appsだ。従来の複雑な開発プロセスを排除し、現場担当者が自らアプリを構築できる。ドラッグ&ドロップで簡単に操作でき、セキュリティもMicrosoft標準に準拠。野良プログラムの乱立を防ぎ、システム管理とメンテナンスも容易になる。さらに、ユーザー自身がアプリを修正できるため、柔軟性も確保できる。

定量化困難な業務もデジタル化

業務のデジタル化は、数値で説明可能なタスクは簡単だが、現場には「説明しにくい」業務も多い。こうした業務は経験に依存しがちで、担当者に頼ることが多い。Power Appsは、このような曖昧な業務も迅速にアプリ化し、標準化と効率化を同時に実現する。

まとめ

Power Appsは、現場主導でアプリを作成・管理できる柔軟性を提供し、野良プログラムのリスクも解消する。複雑な開発プロセスを省き、数値化しにくい業務も効率的にデジタル化することができる。

続きを見る >

開発の遅延「技術的にはできます」の罠

素人仕様と開発遅延

なぜ、システム開発の進捗が悪いのか?
それは、ずばり素人が考えた仕様を開発者に伝えてしまうからである。
すべての原因ではないが、もしシステムのユーザー側の現場担当者や営業担当者がシステム仕様を決めている場合は、ほとんどの場合で満足のいくスピード感はだせていない。

潜む技術的負債

システム仕様さえ伝えていれば、きちんと動くものを作ってくれるので、あとはスピードを上げるだけ。と考えているようであれば、技術的負債が溜まっていることに気付けていない。非エンジニアが決して理解できない技術的負債の怖さは、開発スピードが遅いということだけではない。開発者側から見てシステムが複雑になっていて、メンテナンス性も低い状態になっている。

「できます」の罠

非エンジニアには技術的負債は見えないし説明もわからないことと思う。しかし、技術力でカバーしてくれているから、きちんと動いているのだと思っているなら、それは実は技術力ではない。
「技術的にはできます」このような言葉を聞いたことはないか?
システムエンジニアは「できない」と言えない。「できないことはない」ということが価値なので、素人が考えたシステム仕様でも、言われた通りに作ってしまう。

持続可能な開発へ

システムエンジニアから「技術的にはできます」を聞いたときは、いったん立ち止まるべきである。
エンジニアには、様々な影響範囲や未来のメンテナンス性への懸念などが見えている。これを必要以上のコストだと考えるのか、必要コストと考えるのかで、技術的負債は変わる。

まとめ

自分の理解の範囲でしか人間は発想しないので、システムのことを知らない非エンジニアは、システム仕様を考えるべきではないと言える。また逆に、システムにおいてはシステムエンジニアの方が発想の幅は広いが、業務に関する知識は乏しい。
システムをよく知り業務のこともわかるシステムエンジニアがシステム仕様を考えるべきだが、そんな万能な人は多くはない。だから、その間を取り持つ人間が重要なのである。

続きを見る >

ローコード開発とAI活用

AIとローコードの融合

ローコード開発プラットフォームの普及により、非エンジニアでもアプリケーション開発が可能になった現在、生成AIの活用が大きな注目を集めている。ChatGPTやCopilotなどのAIツールを組み合わせることで、開発スピードがさらに向上すると期待されているが、本当にすべてのローコード開発にAIが必要なのだろうか。コスト、品質、保守性など多角的な視点から、AI導入の真の価値を見極めることが、企業のDX戦略において極めて重要になっている。

コード生成の現実

生成AIによるコード生成は確かに魅力的だが、実際の品質には課題がある。AIが生成するコードは、単純な処理であれば高品質だが、複雑なビジネスロジックや例外処理が絡むと、不完全なコードが生成されることが少なくない。さらに深刻な問題は要件定義の壁である。AIは与えられたプロンプトに基づいてコードを生成するが、曖昧な要件や暗黙の前提条件を正確に理解することは困難である。結果として、開発者は生成されたコードを詳細に検証し、修正する必要があり、期待したほどの効率化が実現しないケースも多く見られる。

保守性のコスト

AIを活用したローコード開発において、最も見落とされがちなのが保守性の課題である。AI生成コードは、その時点では動作しても、後から読み解くことが困難な構造になっていることがある。変数名が不適切だったり、処理の意図が不明瞭だったりすると、半年後に修正が必要になった際、開発担当者が変わっていた場合、大きな手戻りが発生する。また、AIツールのバージョンアップや仕様変更により、過去に生成されたコードとの互換性が失われるリスクも存在する。初期開発のスピードを重視するあまり、長期的な運用コストが膨らんでしまっては本末転倒である。真のDX推進には、目先の効率化だけでなく、持続可能な開発体制の構築が不可欠なのである。

適切な見極め

ローコード開発におけるAI活用は、すべてのケースで必須というわけではない。定型的な画面開発や単純なCRUD操作など、パターン化された開発にはAIが有効だが、複雑なビジネスロジックや高度なセキュリティが要求される領域では、人間による丁寧な設計と実装が重要である。重要なのは、プロジェクトの性質、チームのスキルレベル、長期的な保守計画を考慮した上で、AIを活用すべき領域と従来手法を維持すべき領域を明確に区分することである。段階的にAIツールを導入し、効果を検証しながら適用範囲を拡大していく慎重なアプローチが、失敗リスクを最小限に抑え、真の生産性向上につながる。

まとめ

ローコード開発へのAI導入は、万能の解決策ではなく、適材適所で活用すべきツールである。コード生成の質、要件定義の難しさ、保守性の課題を十分に理解した上で、自社の開発体制に合った形でAIを取り入れることが成功の鍵となる。短期的な効率化だけでなく、長期的な運用まで見据えた戦略的な判断が求められている。

続きを見る >