市民開発とは何か

市民開発の正体

市民開発(Citizen Development)とは、IT部門やSIerに依存せず、業務部門などの非エンジニアが自らアプリケーションを作成する取り組みを指す。従来は「プログラミングができないと無理」と思われがちだったが、現在ではノーコード・ローコードツールの登場により、非技術者でも業務に必要なツールを構築できるようになった。代表的なものとして、SaaSベースの業務アプリやMicrosoft Power Platformなどがあり、これにより業務現場の課題解決が加速している。

IT不足とマクロの功罪

市民開発が注目を集める背景には、深刻なITエンジニア不足がある。人手が足りないなら自ら開発するしかない——この流れが市民開発を後押ししている。その原型とも言えるのがExcelマクロである。かつて現場では、個人PC上で動作するマクロが業務改善ツールとして使われていたが、多くが属人化し、結果として保守不能な“遺産”となってしまっている。

マクロの限界

Excelマクロの最大の弱点は「ファイル単体依存」である。複数人での同時使用や、プログラムの共有に極めて不向きである。マクロ付きファイルをコピーすれば、そのコピーごとに独立した修正が可能となり、誰がどのバージョンを使っているのか把握が困難になる。しかも、更新履歴の管理も難しく、組織全体の業務統一を図るには限界がある。こうした特性が、非効率と混乱を招く要因となっている。

マクロの呪い

属人化の果てに起きるのが「ブラックボックス化」である。Excelマクロにパスワードがかけられ、開発者も不在、しかし業務には不可欠——そんな状態が現場には数多く存在する。これらは情報システム部の管理外にある「野良プログラム(シャドーIT)」と呼ばれ、セキュリティリスクを高める要因でもある。結果として、誰も触れず、誰も捨てられず、今も現場の根幹に鎮座している。まさに、手遅れになる前に対処すべき課題だ。

まとめ

市民開発は、Excelマクロに代わる次世代の業務改善手段となり得る。ローコード・ノーコードの活用により、野良プログラムの乱立を防ぐには、組織としての運用ルールとガバナンスの確立が不可欠だ。アタラキシアDXでは、Power Appsを活用し、手遅れになる前にブラックボックス化したマクロのリプレイス支援を行っている。

関連記事

AIで変わるシステム開発

開発現場の変化

近年、システム開発の現場では深刻な人材不足と納期の短縮化が大きな課題となっている。従来の手法では限界を感じている企業も多いのではないだろうか。そんな中、AI技術の急速な進化により、開発工程に革新的な変化が起きている。コード生成からテスト自動化まで、AIが開発者をサポートする時代が到来した。本記事では、AI活用によってシステム開発がどのように変わるのか、その未来像を探っていく。

日々の開発業務

実際の開発現場では、AIはどのように活用されているのだろうか。要件定義フェーズでは、AIが過去のプロジェクトデータを分析し、最適な機能提案や工数見積もりをサポートする。コーディング段階では、GitHub CopilotやChatGPTなどのAIツールが、リアルタイムでコード補完や不具合検出を行い、開発速度を大幅に向上させている。テスト工程においても、AIが自動的にテストケースを生成し、バグの早期発見を実現する。これらの活用により、開発期間の30%削減や品質向上を達成した企業も増えている。

導入の注意点

しかし、AIの導入には注意すべき点もある。最も大きな課題は、生成されたコードの品質管理である。AIは便利だが、時として不正確なコードや非効率な実装を提案することがある。そのため、開発者にはAI出力を適切に評価できるスキルが求められる。また、セキュリティ面での懸念も無視できない。機密情報を含むコードをAIに学習させることのリスクや、著作権の問題など、法的な側面も考慮が必要である。さらに、既存の開発プロセスとAIツールをどう統合するか、組織全体での運用ルール策定も重要な課題となっている。成功の鍵は、適切なガイドライン設定と継続的な教育にある。

求められるスキル

AI活用が進む中で、開発者の役割も大きく変化している。単純なコーディング作業はAIに任せ、開発者はより創造的で高度な判断を要する業務に集中できるようになる。つまり、システム全体のアーキテクチャ設計、ビジネス要件の深い理解、そしてAIが生成した成果物を評価・改善する能力が重要になるのである。AIは強力なツールだが、あくまで人間の判断を補助するものである。技術トレンドを常に学び、AIとの協働方法を模索し続ける姿勢が、これからの開発者には不可欠である。AI時代だからこそ、人間ならではの創造性と批判的思考力が、より一層価値を持つようになるだろう。

まとめ

AI技術の進化により、システム開発は新たな段階に入った。開発速度の向上や品質改善といった明確なメリットがある一方で、適切な導入戦略と運用ルールが成功の鍵となる。重要なのは、AIを単なる自動化ツールとして捉えるのではなく、人間の能力を拡張するパートナーとして活用することである。技術と人材の両面からバランスよく取り組むことで、開発工程の真の革新が実現できるだろう。

続きを見る >

内製化の成功術

IT報酬の実態

海外と比べて日本のITエンジニアの報酬が低いという記事をよく目にする。それもそのはずで、ハイクラスIT人材は都合のいい「何でも屋」にはならないからである。

導入時の誤解

ユーザー企業やシステムのユーザーは、IT化を行うことで業務が減るという先入観を持っていることがある。システム導入を着手したときの目的を忘れて、その時、その場の課題を優先して都合よくITエンジニアを動かしてしまう。また動くITエンジニアもそこにいたりする。

システムと医療

たとえば、「お腹が痛い」と病院にいって「すぐに切開しよう」とはならないはずだ。このようにシステムにもその他にも色々な条件が絡まり合っている。システムは取り扱う情報量や関連する業務が多く導入に時間がかかる。時間がかかる結果、最初の導入目的を忘れてしまうのである。

真のIT人材価値

ハイクラスIT人材はユーザー側の状況と心理を配慮しつつ、現場のプログラマーの状況と心理を考慮して陣頭指揮できる人材といってもよいだろう。心理というのは物の言い方だけではなく、無形の財産を構築したり業務にフィットさせたりするので、プロジェクトの円滑さが変わるのだ。

まとめ

小手先だけでシステムに関するプロジェクトを推進しようとすると、「言われた通りにやった」という受動的な参加者が増えてしまう。情シスのSIer化を回避するにはITエンジニアを「何でも屋」にさせて疲弊させないことも大切である。開発チームの雰囲気作りも非常に効果がある。

続きを見る >

デジタル化の誤解:効率化の落とし穴

デジタル化は効率化を保証しない

デジタル化と聞くと、多くの人が効率化を期待する。しかし、たとえばFAXで受け取った紙の受注をOCR(文字認識)でデジタルデータ化し、データベースに保存しても、それは単なるデジタル化に過ぎない。デジタル化を行うだけでは本質的な効率向上は望めず、業務フローの見直しがなければ効果は限定的だ。

非効率なフローをそのままデジタル化するリスク

最も大きな問題は、業務フローを見直さずにデジタル化を行うことだ。従来の手作業のフローをそのままデジタル化すれば、かえって作業が煩雑化し、時間がかかることもある。特にITに疎い権限者が意思決定を行う場合、このような失敗はよく見られる。「デジタル化=効率化」と誤解し、実際には逆効果となるケースも少なくない。

俯瞰できないシステム担当者の問題

システム担当者やシステム会社が、俯瞰的な視点を持たない場合も問題だ。業務フローを把握せず、指示通りにデジタル化を進めれば、非効率なシステムが出来上がる。ユーザー部門は「IT化で逆に効率が悪くなった」と感じ、最悪の場合、システムが欠陥品だと誤解されることもある。業務の流れを把握し、適切にデジタル化を進めることが必要だ。

生成AI導入の失敗例

生成AIの導入に関する相談も増えているが、その多くは「期待通りに動かない」という内容だ。その原因は、多くの場合、AIが本来必要ない箇所に導入されていることだ。たとえば、ただのデータ管理であれば、生成AIではなくRDB(リレーショナルデータベース)のほうが合理的だ。効率を上げるには、AIの利用が本当に適切かを見極める判断力が必要だ。

まとめ

「ITが分からないから任せる」という姿勢はリスクが高い。ITを知らない人がIT化を進めるのは、決算書を読めないのに経営をするのと同じだ。業務フローを理解し、技術を正しく活用するには横断的な視点と経験が不可欠だ。

続きを見る >