Power Appsで簡単に業務改善

システム開発の高コストと複雑化

多くの企業では、情報システム部門や外部システム会社にシステム開発を依頼すると、仕様確認が繰り返される。「この機能はどうするか?」「ステータスはこれで全てか?」など、質問が多く、時間とコストが増大。結果、システムは複雑化し、現場のニーズに即したシンプルな解決策から遠ざかる。

野良プログラムのリスク

システム開発の手間を避けるため、各部署でExcelマクロによる「野良プログラム」が横行する。これらは各人のPCに保存され、最新版の確認が困難になり、メンテナンスも不透明。担当者がいなくなるとブラックボックス化し、セキュリティリスクも増加。放置すれば、企業全体の業務効率が低下し、情報漏洩の危険もある。

Power Appsで迅速なシステム構築

こうした問題を解決するのが、MicrosoftのPower Appsだ。従来の複雑な開発プロセスを排除し、現場担当者が自らアプリを構築できる。ドラッグ&ドロップで簡単に操作でき、セキュリティもMicrosoft標準に準拠。野良プログラムの乱立を防ぎ、システム管理とメンテナンスも容易になる。さらに、ユーザー自身がアプリを修正できるため、柔軟性も確保できる。

定量化困難な業務もデジタル化

業務のデジタル化は、数値で説明可能なタスクは簡単だが、現場には「説明しにくい」業務も多い。こうした業務は経験に依存しがちで、担当者に頼ることが多い。Power Appsは、このような曖昧な業務も迅速にアプリ化し、標準化と効率化を同時に実現する。

まとめ

Power Appsは、現場主導でアプリを作成・管理できる柔軟性を提供し、野良プログラムのリスクも解消する。複雑な開発プロセスを省き、数値化しにくい業務も効率的にデジタル化することができる。

関連記事

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >

モックアップの料金

要件定義の意義

ユーザーの要件を明確にすることで、開発の方向性がブレず、無駄な修正や手戻りを防ぐことができる。定期的なミーティングやレビューセッションを通じて、開発者はユーザーのニーズを正確に把握し、ドキュメント化やモックアップ化することが重要である。

試作品の価値

SEはユーザーに具体的なイメージを持ってもらうために、プロトタイプやモックアップを作成し、ユーザーに確認してもらうことで、誤解や認識のズレを減らす。これにより、実装後の大幅な変更を回避できる。

モックアップの功罪

モックアップの作成は有料であることが多いようである。また、非エンジニアがシステム技術を意識しないモックアップであれば、その後の開発が複雑になってしまうといったことも考えられる。

ユーザー主導開発

モックアップを用いてユーザーがシステムの機能や開発プロセスについて理解を深めることで、適切なフィードバックを提供することが大切である。開発チームとのコミュニケーションも円滑になり、無駄な手戻りや修正を減少する。

まとめ

システム開発におけるユーザーと開発チームのコミュニケーション改善が、システム開発コストを軽減する。そのためには視覚的にコミュニケーションできるモックアップは重要であろう。

続きを見る >

デジタル化の誤解:効率化の落とし穴

デジタル化は効率化を保証しない

デジタル化と聞くと、多くの人が効率化を期待する。しかし、たとえばFAXで受け取った紙の受注をOCR(文字認識)でデジタルデータ化し、データベースに保存しても、それは単なるデジタル化に過ぎない。デジタル化を行うだけでは本質的な効率向上は望めず、業務フローの見直しがなければ効果は限定的だ。

非効率なフローをそのままデジタル化するリスク

最も大きな問題は、業務フローを見直さずにデジタル化を行うことだ。従来の手作業のフローをそのままデジタル化すれば、かえって作業が煩雑化し、時間がかかることもある。特にITに疎い権限者が意思決定を行う場合、このような失敗はよく見られる。「デジタル化=効率化」と誤解し、実際には逆効果となるケースも少なくない。

俯瞰できないシステム担当者の問題

システム担当者やシステム会社が、俯瞰的な視点を持たない場合も問題だ。業務フローを把握せず、指示通りにデジタル化を進めれば、非効率なシステムが出来上がる。ユーザー部門は「IT化で逆に効率が悪くなった」と感じ、最悪の場合、システムが欠陥品だと誤解されることもある。業務の流れを把握し、適切にデジタル化を進めることが必要だ。

生成AI導入の失敗例

生成AIの導入に関する相談も増えているが、その多くは「期待通りに動かない」という内容だ。その原因は、多くの場合、AIが本来必要ない箇所に導入されていることだ。たとえば、ただのデータ管理であれば、生成AIではなくRDB(リレーショナルデータベース)のほうが合理的だ。効率を上げるには、AIの利用が本当に適切かを見極める判断力が必要だ。

まとめ

「ITが分からないから任せる」という姿勢はリスクが高い。ITを知らない人がIT化を進めるのは、決算書を読めないのに経営をするのと同じだ。業務フローを理解し、技術を正しく活用するには横断的な視点と経験が不可欠だ。

続きを見る >