内製化の成功術

IT報酬の実態

海外と比べて日本のITエンジニアの報酬が低いという記事をよく目にする。それもそのはずで、ハイクラスIT人材は都合のいい「何でも屋」にはならないからである。

導入時の誤解

ユーザー企業やシステムのユーザーは、IT化を行うことで業務が減るという先入観を持っていることがある。システム導入を着手したときの目的を忘れて、その時、その場の課題を優先して都合よくITエンジニアを動かしてしまう。また動くITエンジニアもそこにいたりする。

システムと医療

たとえば、「お腹が痛い」と病院にいって「すぐに切開しよう」とはならないはずだ。このようにシステムにもその他にも色々な条件が絡まり合っている。システムは取り扱う情報量や関連する業務が多く導入に時間がかかる。時間がかかる結果、最初の導入目的を忘れてしまうのである。

真のIT人材価値

ハイクラスIT人材はユーザー側の状況と心理を配慮しつつ、現場のプログラマーの状況と心理を考慮して陣頭指揮できる人材といってもよいだろう。心理というのは物の言い方だけではなく、無形の財産を構築したり業務にフィットさせたりするので、プロジェクトの円滑さが変わるのだ。

まとめ

小手先だけでシステムに関するプロジェクトを推進しようとすると、「言われた通りにやった」という受動的な参加者が増えてしまう。情シスのSIer化を回避するにはITエンジニアを「何でも屋」にさせて疲弊させないことも大切である。開発チームの雰囲気作りも非常に効果がある。

関連記事

製造業DX – IoT×ローコード活用法

IoT導入の新時代

製造業の現場では、人手不足や品質管理の課題が深刻化しているが、IoTとローコード技術の組み合わせが解決策として注目されている。従来のシステム開発には高額な費用と長期間を要していたが、ローコードプラットフォームを活用することで、現場の作業者でも直感的にIoTシステムを構築できるようになった。センサーからのデータ収集、機械の稼働状況監視、品質データの自動記録など、これまで手作業で行っていた業務を効率化できる。

ローコード開発の威力

ローコード開発プラットフォームは、プログラミング知識がなくても視覚的な操作でアプリケーションを作成できる革新的な技術である。製造現場の作業者が自分たちのニーズに合わせてリアルタイムでシステムをカスタマイズでき、IT部門への依存を大幅に減らせる。温度センサー、振動センサー、カメラなどのIoTデバイスと連携させることで、設備の予知保全や作業効率の向上を実現できる。従来の開発期間を3分の1に短縮し、コストも大幅に削減できるため、中小企業でも導入しやすくなっている。

成功事例と導入効果

実際の導入事例を見ると、ある自動車部品メーカーでは設備稼働率が15%向上し、品質不良率を30%削減できた。IoTセンサーで機械の振動や温度を常時監視し、異常を検知すると自動でアラートを発信するシステムを構築したのである。また、食品製造業では温度・湿度管理の自動化により、品質検査時間を50%短縮し、人的ミスによる製品廃棄を90%削減した。これらの成果は、現場作業者がローコードツールを使って自ら問題解決に取り組んだ結果であり、外部ベンダーに依存しない持続可能なDX推進を実現している。

未来の製造業像

IoT×ローコード技術は単なるデジタル化を超えて、製造業の競争力を根本的に変革する力を持っている。現場の知見を活かしたシステム構築により、真に使えるDXソリューションが生まれ、継続的な改善サイクルが確立される。今後はAI技術との融合により、さらに高度な予測分析や自動最適化が可能になるだろう。重要なのは小さく始めて段階的に拡張していくアプローチである。まずは一つの工程から始めて成功体験を積み重ね、徐々に全社規模へ展開していくことで、確実にDX効果を実感できる。変化に対応できる柔軟な組織作りこそが成功の鍵となる。

まとめ

IoT×ローコード技術は、製造業DXの民主化を実現する画期的なソリューションである。プログラミング不要で現場主導のシステム構築が可能になり、短期間・低コストでの導入を実現できる。成功事例が示すように、設備稼働率向上、品質改善、作業効率化など具体的な成果が期待できる。重要なのは小さく始めて段階的に拡張するアプローチであり、現場の知見を活かした持続可能なDX推進が可能になる。

続きを見る >

ローコード開発≠安い

誤解されるコスト削減

実はローコード・ノーコードツールを使えば、開発が必要なくなるので安くなるというのは正しくない。たしかに、ノーコードツールを社内メンバーでCMSを使ってソフトを作るという場面は開発費用はかからない。

CMSとはコンテンツ・マネジメント・システムの略で、たとえばWebサイトのコンテンツを構成するテキストや画像、デザインなどを非エンジニアがプログラミングをせずに作成や管理できる仕組みのことである。ローコードツールはそれに加えて少しのプログラミング知識でシステムやツールを作成できることである。

開発手法の選択基準

断じてローコード開発だからといって安いわけではない。開発手法の特性による得手不得手を上手に使い分けるからトータルとして価格が安くなるということである。非エンジニア営業の金額調整という意味での判断でローコード開発を選択する場合は失敗することがある。

システム導入の本質理解

ローコード開発でも、システム導入の目的や条件が本質的にわかっていなければ、仕様要件のブレによって結果としてトータルが安くなることはない。これはローコード開発ということが問題なのではなく、フルスクラッチ開発であっても、SaaSと利用する場合であっても同じことが言える。

負債の危険

本来ローコード開発が適さない場合にも関わらず無理やりに合わせることで、プログラム部分の複雑性が増し、技術的負債となって大きな問題になっていく。結果として安くはならず、ローコード開発のメリットであるメンテナンス性までも損なうため、トータルで考えると高くなる。

まとめ

お客様の予算内で考えないといけないので、といった口癖があれば注意が必要である。クライアントの言いなり状態であれば、無理な要求は開発における仕様だけではないだろう。金額を含めた総合的な判断ができる人が、結果としてローコード開発を選択するわけである。

続きを見る >

2026年DX計画の立て方

なぜ今なのか

2026年は企業のDX推進において大きな転換点となる年だ。政府のデジタル・AI補助金制度が本格始動し、単なるITツール導入ではなく、業務そのものを効率化する仕組みづくりが求められている。AI、IoT、ローコードといったテクノロジーは個別に活用するのではなく、統合的な戦略のもとで導入することで初めて真の効果を発揮する。2025年の今こそ、来年に向けた具体的な計画策定を開始すべきタイミングである。

三技術の役割

DX計画を成功させるには、まず各技術の役割を正しく理解することが重要だ。AIはデータを分析し判断・予測を行うソフトウェアであり、IoTはセンサーを通じてデータを収集するハードウェアの仕組みである。この二つは補完関係にあり、IoTが集めたデータをAIが分析することで、異常検知や需要予測といった高度な自動化が実現する。一方、ローコードはプログラミング知識が少なくてもアプリケーションを構築できる開発手法で、IT人材不足を解消する手段として注目されている。生成AIとの連携により、開発スピードは従来の数倍にまで向上している。

統合戦略の要点

三つの技術を統合した戦略を設計する際には、いくつかの重要なステップがある。第一に、自社のAI成熟度を客観的に評価することだ。戦略、人材、データ、ガバナンス、運用、文化の六つの軸で現状を診断し、業界平均と比較しながら目標を設定する。第二に、大規模導入ではなく「まず一業務」から改善を始めることである。請求書処理や在庫管理など、効果を数字で示しやすい領域を選定し、小さな成功体験を積み重ねる姿勢が重要となる。第三に、現場が使い続けられる仕組みを重視することだ。高機能なツールを導入しても、現場に定着しなければ意味がない。

実行手順

2026年のDX計画を実行するための具体的な手順を整理する。まず今月から着手すべきは、AI成熟度診断の実施と、ROI最大化が見込める業務領域の特定だ。ノーコード・ローコードツールを活用した最小機能でのPoC(概念実証)を開始し、四半期ごとにAI推進委員会でレビューを行う体制を構築する。補助金申請を見据え、AIやDXが業務のどこに組み込まれるかを可視化した資料を準備することも欠かせない。課題とAIのつながりを明確に説明できれば、審査において大きなアドバンテージとなる。経営層が先頭に立ち、全社一丸となって取り組む姿勢を示すことが成功への鍵である。

まとめ

2026年のDX計画では、AI・IoT・ローコードを個別ではなく統合的に活用する戦略設計が求められる。成熟度診断で現状を把握し、小さな成功を積み重ねながら段階的に拡大していくアプローチが効果的だ。補助金活用も視野に入れ、今から計画策定を開始することが重要である。

続きを見る >