予算ブレの原因

開発の変動要因

システム開発は長期にわたることが多く、また未来の不確実性の中で予算を策定しなくてはいけないことがある。セキュリティーをはじめ動作環境の変化や人員の欠如、予期していなかった仕様の発覚などが原因だ。

目標変化と予算

進捗率は目的地が明確に設定されていれば数字を負うことで予算達成率を算出することができる。しかし、目的地が近い遠いのは無しではなく、根本的な目的地がなくなったり、複数になったりすることがシステム予算の策定の難しいところである。

計画型開発法

システムに未来を見ることができればブレない、見えないことをすべて調査の上で着手できれば確実な予算と実行が可能である。進捗率の報告が可能になる。フォーターフォールモデルなのでコストがかかることと時間がかかることの覚悟が必要だ。途中での方向修正は原則できない。

柔軟な開発手法

逆に低予算で早く導入するなら、見えにくくなるデメリットがある。状況によって対応を素早く変化させる必要があるため進捗率を算出しにくい。アジャイル開発と呼ばれるものであり、社内開発であることが理想である。途中で出てくる条件に対しても柔軟に方向性を変化させることが可能である。

まとめ

アジャイル開発で予算を立てるときは、1.5-2.5倍くらいを目安に余裕を持って設定することを推奨する。

関連記事

フルスクラッチは体力

開発手法の選択

フルスクラッチかパッケージか、最近ではSaaSなどもシステム構築の検討に入る。実は開発手法やツールよりも、どのようなシステムで、どれくらいの規模のシステム開発会社が担当するかが重要である。

SESのリスク

人数が多い会社であればあるほど安心感があってよいと安易に考えることは適切ではない。なぜなら、SE派遣やSESと呼ばれる人月(人工)単位で売り上げの経つ会社には技術の総合力がないからである。

技術の総合力

技術の総合力とは、SE作業やプログラミング作業などの1人で対応できる技術力を差すのではなく、システム構築やシステムの運用全般における最適手段を考えることができる能力のことである。

表層の即効性

SE派遣やSESの付加価値はその人単体のプログラミング能力に偏るため、一見対応がよく、何も問題がないように思える。しかし、これが技術的負債を作ってしまうひとつの要因でもある。

まとめ

フルスクラッチを考えるなら、SESを中心としないシステム会社で且つ人数規模も多い方がよい。安価にフルスクラッチでシステムを構築してしまうと、メンテナンスや運用でしっぺ返しが待っている。時間が経つごとにシステム保守費用が高くなるのである。

続きを見る >

Excel業務のDX化は本当に必要か

DX化の現状

多くの企業でExcel業務のDX化が話題になっている。「Excelは古い」「すぐにシステム化すべき」という声も聞かれるが、本当にすべてのExcel業務をDX化すべきなのだろうか。実は、やみくもなDX化は逆効果になることも少なくない。Excel業務のDX化には正しい順序と判断基準が必要である。本記事では、DX化の利点を理解しながら、適切なアプローチについて考えていく。

DX化の利点

Excel業務をDX化することで得られる利点は確かに多数ある。まず、データの一元管理により情報の正確性が向上し、複数人での同時編集や更新作業がスムーズになる。次に、自動化による作業時間の大幅な削減が可能である。手作業で行っていた集計や転記作業から解放されることで、より付加価値の高い業務に時間を使えるようになる。さらに、データ分析の高度化により、経営判断のスピードと精度が向上する。これらの利点は、企業の競争力強化に直結する重要な要素である。

DX化の落とし穴

しかし、DX化を急ぐあまり失敗するケースも多く見られる。業務フローが整理されていない状態でシステムを導入すると、非効率な業務がそのままシステム化されてしまう。また、現場の声を聞かずにツールを選定すると、使いにくいシステムが現場に定着せず、結局Excelに戻ってしまうこともある。さらに、すべてを一度に変えようとすると、従業員の負担が大きくなり、業務が混乱する。投資したコストに見合う効果が得られず、DX化自体が目的化してしまう危険性もある。適切な準備なしのDX化は、かえって生産性を下げる結果を招くのである。

正しい進め方

Excel業務のDX化を成功させるには、段階的なアプローチが不可欠である。まず、現状の業務フローを可視化し、本当に必要な作業とムダな作業を明確に区別する。次に、Excelで十分な業務と、システム化すべき業務を見極めることが重要である。すべてをシステム化する必要はない。その上で、優先順位をつけて小さく始め、効果を確認しながら展開していく。従業員のITリテラシーに応じた教育も並行して行うことで、スムーズな移行が実現する。DX化は手段であり目的ではない。自社の状況に合わせた最適な方法を選ぶことが、真の業務改善につながるのである。

まとめ

Excel業務のDX化は、正しく進めれば大きな効果をもたらすが、順序を誤ると逆効果になる。利点を理解しつつ、自社の状況を冷静に分析し、段階的に進めることが成功の鍵である。やみくもなシステム化ではなく、業務改善を第一に考えた戦略的なアプローチを取るべきである。

続きを見る >

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >