予算ブレの原因

開発の変動要因

システム開発は長期にわたることが多く、また未来の不確実性の中で予算を策定しなくてはいけないことがある。セキュリティーをはじめ動作環境の変化や人員の欠如、予期していなかった仕様の発覚などが原因だ。

目標変化と予算

進捗率は目的地が明確に設定されていれば数字を負うことで予算達成率を算出することができる。しかし、目的地が近い遠いのは無しではなく、根本的な目的地がなくなったり、複数になったりすることがシステム予算の策定の難しいところである。

計画型開発法

システムに未来を見ることができればブレない、見えないことをすべて調査の上で着手できれば確実な予算と実行が可能である。進捗率の報告が可能になる。フォーターフォールモデルなのでコストがかかることと時間がかかることの覚悟が必要だ。途中での方向修正は原則できない。

柔軟な開発手法

逆に低予算で早く導入するなら、見えにくくなるデメリットがある。状況によって対応を素早く変化させる必要があるため進捗率を算出しにくい。アジャイル開発と呼ばれるものであり、社内開発であることが理想である。途中で出てくる条件に対しても柔軟に方向性を変化させることが可能である。

まとめ

アジャイル開発で予算を立てるときは、1.5-2.5倍くらいを目安に余裕を持って設定することを推奨する。

関連記事

2026年DX計画の立て方

なぜ今なのか

2026年は企業のDX推進において大きな転換点となる年だ。政府のデジタル・AI補助金制度が本格始動し、単なるITツール導入ではなく、業務そのものを効率化する仕組みづくりが求められている。AI、IoT、ローコードといったテクノロジーは個別に活用するのではなく、統合的な戦略のもとで導入することで初めて真の効果を発揮する。2025年の今こそ、来年に向けた具体的な計画策定を開始すべきタイミングである。

三技術の役割

DX計画を成功させるには、まず各技術の役割を正しく理解することが重要だ。AIはデータを分析し判断・予測を行うソフトウェアであり、IoTはセンサーを通じてデータを収集するハードウェアの仕組みである。この二つは補完関係にあり、IoTが集めたデータをAIが分析することで、異常検知や需要予測といった高度な自動化が実現する。一方、ローコードはプログラミング知識が少なくてもアプリケーションを構築できる開発手法で、IT人材不足を解消する手段として注目されている。生成AIとの連携により、開発スピードは従来の数倍にまで向上している。

統合戦略の要点

三つの技術を統合した戦略を設計する際には、いくつかの重要なステップがある。第一に、自社のAI成熟度を客観的に評価することだ。戦略、人材、データ、ガバナンス、運用、文化の六つの軸で現状を診断し、業界平均と比較しながら目標を設定する。第二に、大規模導入ではなく「まず一業務」から改善を始めることである。請求書処理や在庫管理など、効果を数字で示しやすい領域を選定し、小さな成功体験を積み重ねる姿勢が重要となる。第三に、現場が使い続けられる仕組みを重視することだ。高機能なツールを導入しても、現場に定着しなければ意味がない。

実行手順

2026年のDX計画を実行するための具体的な手順を整理する。まず今月から着手すべきは、AI成熟度診断の実施と、ROI最大化が見込める業務領域の特定だ。ノーコード・ローコードツールを活用した最小機能でのPoC(概念実証)を開始し、四半期ごとにAI推進委員会でレビューを行う体制を構築する。補助金申請を見据え、AIやDXが業務のどこに組み込まれるかを可視化した資料を準備することも欠かせない。課題とAIのつながりを明確に説明できれば、審査において大きなアドバンテージとなる。経営層が先頭に立ち、全社一丸となって取り組む姿勢を示すことが成功への鍵である。

まとめ

2026年のDX計画では、AI・IoT・ローコードを個別ではなく統合的に活用する戦略設計が求められる。成熟度診断で現状を把握し、小さな成功を積み重ねながら段階的に拡大していくアプローチが効果的だ。補助金活用も視野に入れ、今から計画策定を開始することが重要である。

続きを見る >

ノウハウはタダじゃない

IT導入の難しさ

IT導入では、どの程度のコストをかけるべきか、その費用がどのように効果を生むかの判断が難しい場面が多い。正解が存在しないため、常に試行錯誤が伴うのが実情である。導入後も改善や調整が続き、理想の形を追い求めて進化し続ける必要がある。これこそが、IT導入のハードルを高める最大の要因である。

「導入=完成」の落とし穴

「導入すれば終わり」と考えると、ITプロジェクトは失敗しやすくなる。IT導入には明確なゴールがないため、段階的なチェックポイントの設計が重要となる。導入途中で要件が変化することも少なくないが、それを「失敗」とみなすのではなく、「成功への第一歩」と捉えるべきである。柔軟な対応と継続的な見直しこそが、成果につながる道である。

見積もりが難しい理由

目に見えるモノを作る場合とは異なり、ITシステムの見積もりには高い不確実性が伴う。業務の関連性、将来的な拡張性、外部環境の変化など、検討すべき要素は無数に存在する。したがって、本格的なIT導入には、実際の開発にかかる時間の2倍ほどの準備期間を設ける覚悟が必要である。余裕を持つことが、後のトラブル回避にも直結する。

DXがカオスになる訳

システム構築やDXのプロジェクトは、時間の経過とともに当初の目的を見失いやすい。最初に定めた要件が現場の混乱の中で忘れ去られ、後から新たな要求が持ち込まれることで、プロジェクトが迷走していく。現場も対応に追われ、全体が混沌としていく。こうした事態を避けるには、目的の定期的な再確認と明確な進行管理が不可欠である。

まとめ

ITに苦手意識があるからといって「なんとかしてくれ」と丸投げする姿勢では、プロジェクトは成功しない。目的や進捗のチェックポイントといった、数値化できないノウハウの積み重ねこそが、成功への鍵となる。

続きを見る >

DX現場の生成AIツール2025

DX推進とAIツール活用

2025年現在、DX推進において生成AIツールの活用は避けて通れないテーマとなっている。調査によれば国内ソフトウェア開発におけるAIコード生成の利用率は49%に達し、資料作成においても従来の60%以上の時間短縮が報告されている。しかし現場では「どのツールを選べばよいかわからない」「導入したものの活用が進まない」という声も多い。本記事では、デザイン・ドキュメント作成・コーディング・業務自動化の4分野において、DX担当者が即活用できる実践的なツールを具体的に紹介する。

デザイン・資料作成の効率化

デザイン・UI/UX分野では「Figma AI」と「Canva AI」が二大勢力として君臨している。Figma AIはプロトタイプ生成やレイヤー名の自動整理が可能で、Config2025で発表された「Figma Make」ではテキスト指示だけでコード生成まで実現する。Canvaは非デザイナー向けに画像編集・自動翻訳・音声生成を統合し、SNS投稿やプレゼン資料を短時間で仕上げられる点が強みである。資料作成分野では「Gamma」がテキスト入力のみでプロ級スライドを自動生成し、「Notion AI」は要約・文章生成・議事録作成をワンストップで対応する。Microsoft 365環境なら「Copilot」がWord・Excel・PowerPointと連携し、既存資産を活かした効率化が図れる。

コーディング支援AIの進化

コーディング・開発分野では「GitHub Copilot」が依然としてデファクトスタンダードの地位を維持している。VS CodeやJetBrains IDEとの深い統合によりコード補完・生成・テスト作成をシームレスに実行でき、NTTドコモやカカクコムなど大手企業での導入事例も増加中である。一方で2023年登場の「Cursor」はAIネイティブエディタとして進化を続け、2025年10月のバージョン2.0では専用モデル「Composer 1」とマルチエージェント実行機能を搭載した。プロジェクト全体を理解しながら複数ファイルを横断編集できる点が特徴である。さらにAnthropicの「Claude Code」はターミナル上で動作し、自然言語指示だけでコード生成からデバッグ・リファクタリングまで対応する。開発チームの規模や既存環境に応じた使い分けが重要となる。

業務自動化によるDX改革

業務自動化分野では「Microsoft Power Automate」がMicrosoft 365との統合度の高さで優位性を発揮している。2025年のアップデートではAIファーストの設計思想のもと、自然言語でフローを作成・編集できるCopilot機能が強化された。「Zapier」は7,000以上の外部サービスと連携可能で、異なるアプリ間のデータ転送を直感的なUIで自動化できる。エンタープライズ向けでは「UiPath」が世界的シェアを持ち、教育コンテンツとコミュニティが充実している点で社内人材育成にも適している。ただしツール導入においては、セキュリティポリシーの策定・情報漏洩対策・ライセンス管理が不可欠である。生成AIが業務データを扱う以上、社内ルールに沿った運用設計を先行させることが成功の分岐点となる。

続きを見る >