予算ブレの原因

開発の変動要因

システム開発は長期にわたることが多く、また未来の不確実性の中で予算を策定しなくてはいけないことがある。セキュリティーをはじめ動作環境の変化や人員の欠如、予期していなかった仕様の発覚などが原因だ。

目標変化と予算

進捗率は目的地が明確に設定されていれば数字を負うことで予算達成率を算出することができる。しかし、目的地が近い遠いのは無しではなく、根本的な目的地がなくなったり、複数になったりすることがシステム予算の策定の難しいところである。

計画型開発法

システムに未来を見ることができればブレない、見えないことをすべて調査の上で着手できれば確実な予算と実行が可能である。進捗率の報告が可能になる。フォーターフォールモデルなのでコストがかかることと時間がかかることの覚悟が必要だ。途中での方向修正は原則できない。

柔軟な開発手法

逆に低予算で早く導入するなら、見えにくくなるデメリットがある。状況によって対応を素早く変化させる必要があるため進捗率を算出しにくい。アジャイル開発と呼ばれるものであり、社内開発であることが理想である。途中で出てくる条件に対しても柔軟に方向性を変化させることが可能である。

まとめ

アジャイル開発で予算を立てるときは、1.5-2.5倍くらいを目安に余裕を持って設定することを推奨する。

関連記事

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >

ローコードで失敗する企業

導入の落とし穴

ローコード開発は、プログラミング知識がなくても業務アプリを構築できる手法として注目を集めている。しかし、導入企業の多くが期待した成果を得られず、プロジェクトが頓挫するケースが後を絶たない。「簡単に作れる」という触れ込みを鵜呑みにし、適切な計画なく導入を進めた結果、かえって業務効率が低下する事態も発生している。失敗の原因は、ローコードの特性を正しく理解していないことにある。

活きる業務

ローコードが真価を発揮するのは、定型的な業務プロセスの自動化や、シンプルなデータ管理アプリの構築である。例えば、申請承認ワークフロー、在庫管理、顧客情報の一元管理といった業務では、短期間で実用的なシステムを構築できる。また、現場部門が主体となって改善を繰り返す必要がある業務にも適している。成功企業に共通するのは、最初から大規模なシステムを目指さず、小さな業務改善から着手している点である。スモールスタートで効果を検証し、段階的に適用範囲を広げることで、確実に成果を積み上げている。

業務選定の失敗

一方で、ローコードには明確な限界がある。複雑なビジネスロジックを含む基幹システム、大量データのリアルタイム処理、高度なセキュリティ要件が求められるシステムには不向きである。失敗企業の典型的なパターンは、これらの領域にローコードを適用しようとするケースである。開発途中で機能の限界に直面し、結局フルスクラッチでの再開発を余儀なくされることも少なくない。また、ベンダーロックインのリスクも見過ごせない。特定のプラットフォームに依存することで、将来的な拡張性や他システムとの連携に支障をきたす事例が増えている。業務特性を見極めずに導入を急ぐことが、失敗の最大の要因である。

選定フレームワーク

ローコード導入を成功させるには、業務の棚卸しと適性判断が不可欠である。まず、対象業務の複雑性、データ量、連携要件を可視化し、ローコードで対応可能な範囲を明確にする。次に、将来的な拡張性や保守運用の観点から、長期的なコストを試算することが重要である。短期的な開発コスト削減だけを見て判断すると、運用フェーズで想定外の負担が発生する。成功企業は、ローコードと従来型開発を適材適所で使い分けている。すべてをローコードで賄おうとせず、業務特性に応じた最適な開発手法を選択することが、DX推進における重要な判断軸となる。

まとめ

ローコードは万能ではない。定型業務や小規模アプリには有効だが、複雑な基幹システムには不向きである。成功の鍵は、業務特性を正しく見極め、適切な領域に適用すること。導入前の計画策定と、段階的なアプローチが失敗を防ぐ最善策である。ツールの特性を理解し、戦略的に活用することでDX推進を加速させよう。

続きを見る >

内製化人材戦略

内製化の壁

システムの内製化が重要ということは、どこでも聞くと思う。しかし、具体的に内製化していくための段取りを整理して教えてもらうのは難しいのかもしれない。業種業態によって様々なケースが存在するからである。内製化を成功させるには、単に技術的な知識だけでなく、組織全体での戦略的な取り組みが不可欠となる。

経営コミット

システム開発の内製化を行っていくには、まず経営層からのコミットメントが必要不可欠である。これが必要であるから諸外国ではCRO(Chief-Revenue-Officer)という部門を横断した権限を持つ人を据えている。その上で、まず内製化の目的を明確にする。おおむねコスト削減、スピード向上、ナレッジ蓄積などであろう。目的がきまると、企画、開発、保守、インフラなどのどの範囲で内製化するのが見えてくる。組織全体での合意形成が内製化成功の基盤となるのである。

失敗回避策

よく聞く失敗例では、権限のないIT戦略室、デジタル推進部などを作ってしまうことである。あるいは、適切な人員の配置や育成がなされないパターンも同様である。大きな権限を持つことになることを前提に考えると、実施するプロジェクトについても小さなプロジェクトにおいて実績を積み上げたほうがいいだろう。たとえば、小規模低リスクである業務改善ツール(例:Power AppsやExcelマクロ)から市民開発を実施していくなどを計画することをお勧めする。段階的なアプローチが組織の信頼獲得につながる。

仕組み化

小さなプロジェクトで実績を積むと、こなれてきてしまうため、やはり属人化の危険性が伴う。ここで、いかに永続的に考えることができるか、内製化のための仕組みを構築できるかは、システム開発経験者などの知見のある人も交えて人材育成に取り組むべきである。定期的な振り返り(レトロスペクティブ)やナレッジ共有会、現場からの改善提案を吸い上げる文化を育て、仕組化していく。持続可能な内製化には組織文化の変革が欠かせない。

まとめ

開発基盤とガバナンス整備、ソース管理やドキュメント管理などの定性的な内製化は簡単に作ることができる。しかし、そのマインドや仕組み、自然とDevOpsをはじめとしたPDCAサイクルにもっていくには、システム知見だけでも難しくある。持続的な内製化にたどり着くためには最初の企画や構成段階で知見をもつメンバーを入れておくのがよいだろう。

続きを見る >