予算ブレの原因

開発の変動要因

システム開発は長期にわたることが多く、また未来の不確実性の中で予算を策定しなくてはいけないことがある。セキュリティーをはじめ動作環境の変化や人員の欠如、予期していなかった仕様の発覚などが原因だ。

目標変化と予算

進捗率は目的地が明確に設定されていれば数字を負うことで予算達成率を算出することができる。しかし、目的地が近い遠いのは無しではなく、根本的な目的地がなくなったり、複数になったりすることがシステム予算の策定の難しいところである。

計画型開発法

システムに未来を見ることができればブレない、見えないことをすべて調査の上で着手できれば確実な予算と実行が可能である。進捗率の報告が可能になる。フォーターフォールモデルなのでコストがかかることと時間がかかることの覚悟が必要だ。途中での方向修正は原則できない。

柔軟な開発手法

逆に低予算で早く導入するなら、見えにくくなるデメリットがある。状況によって対応を素早く変化させる必要があるため進捗率を算出しにくい。アジャイル開発と呼ばれるものであり、社内開発であることが理想である。途中で出てくる条件に対しても柔軟に方向性を変化させることが可能である。

まとめ

アジャイル開発で予算を立てるときは、1.5-2.5倍くらいを目安に余裕を持って設定することを推奨する。

関連記事

DX失敗企業の共通点

DX推進の落とし穴

デジタルトランスフォーメーション(DX)に取り組む企業が増える一方で、期待した成果を得られずに頓挫するケースが後を絶たない。経済産業省の調査でも、DXに成功したと実感している企業はわずか数パーセントに留まっている。なぜ多くの企業がDXで失敗してしまうのか。本記事では、失敗する会社に共通する特徴を分析し、成功へ導くための視点を紹介する。

失敗企業の共通点

DXが失敗する会社には、いくつかの共通点がある。第一に「目的の不明確さ」である。ツール導入そのものが目的化し、何を解決したいのかが曖昧なまま進めてしまう。第二に「経営層の関与不足」が挙げられる。DXは全社的な変革であり、現場任せでは推進力が生まれない。第三に「現場との乖離」である。実際に業務を担う社員の声を聞かず、使われないシステムが構築されるケースが多発している。これらの問題は単独ではなく、複合的に絡み合って失敗を引き起こす。

成功企業の原則

では、成功している企業は何が違うのか。成功企業に共通するのは「ビジネス課題起点の発想」である。まず解決すべき経営課題を明確にし、その手段としてデジタル技術を選定する。また、経営者自身がDXの旗振り役となり、変革の必要性を全社に浸透させている。さらに重要なのが「スモールスタート」の姿勢である。最初から大規模なシステム刷新を狙うのではなく、小さな成功体験を積み重ねることで社内の理解と協力を得ていく。加えて、外部パートナーを活用して専門知識を補い、客観的な視点で推進状況を評価する仕組みを持っている。

成功は準備次第

DXの成否は、取り組む前の「準備」で大きく左右される。自社の現状を正しく把握し、何のためにDXを行うのかという目的を明文化することが第一歩である。その上で、経営層から現場まで一貫したビジョンを共有し、段階的に進める計画を立てるべきだ。失敗を恐れて動かないことが最大のリスクである。しかし、闇雲に進めても成果は出ない。重要なのは、正しい方向性を持って着実に歩みを進めることである。自社だけで判断が難しい場合は、DX推進の実績を持つ専門家の力を借りることも有効な選択肢となる。

まとめ

DXが失敗する会社には、目的の不明確さ、経営層の関与不足、現場との乖離という共通点がある。成功するためには、ビジネス課題を起点とした発想、経営者主導の推進体制、スモールスタートによる段階的な取り組みが不可欠である。正しい準備と専門家の支援を活用し、着実なDX推進を目指すべきだ。

続きを見る >

小規模AI導入ガイド

効果検証から始める

多くの人は、試しにAIを導入してみて、効果を見てから予算取りを行っていきたいと考えている。とりあえずツールを導入したいといった理由では、なかなか費用を使っていいとはならないだろう。このような慎重なアプローチは非常に理にかなっており、実際の効果を数値で示すことができれば、その後の本格的な導入に向けた予算確保もスムーズに進むはずだ。まずは小さく始めて、確実な成果を積み重ねることが重要になってくる。

UI重視の効果測定

AIの効果を確認してから検討することを考えたときに最初にやることは、実はUI(ユーザーインターフェース)の部分である。例えば、グラフの表示などだ。結果として何ができれば、どういった業務がどれくらい短縮されるのかを第三者が見ても確認しやすいからだ。データの可視化により、AI導入前後の変化を明確に示すことができれば、関係者全員が効果を実感できる。特に経営陣への報告時には、視覚的に分かりやすい資料があることで、プロジェクトの価値を効果的に伝えることが可能になる。

開発とAIの分離問題

UIを作るとなると、結局はシステムの開発が必要になってしまうのではないかという懸念が生まれる。あるいは、システム開発を行うことで、そもそも期待したAIの活用がなされなくなってしまったりすることもあるだろう。これは、目的をシステム開発とAIとに分けているからだ。本来であればAI活用による業務改善が目標であったにも関わらず、システム開発が主目的となってしまい、AI機能が後回しになってしまうケースも少なくない。このような本末転倒を避けるためには、プロジェクトの優先順位を明確にすることが不可欠だ。

統合的アプローチの重要性

AIはAIの会社に発注する、UIはシステム開発会社に発注するといった、区分けをしてしまうことに誤りがある。まず、やるべきことを分解するのではなく、ITに対する知見のある人に区分けから入ってもらい、技術的な判断も行いつつKPIを作っていくことが重要になる。これは市民開発と呼ばれるものに近く、自社内でローコードを使って軽く開発することを意味する。技術的な専門知識を持つ人材が全体を俯瞰し、最適な技術選択とプロジェクト設計を行うことで、効率的かつ効果的なAI導入が実現できるのだ。

まとめ

部署やグループを横断した視点を持つことがとても大切であることがわかった。ツールや部分的な技術を目的としてしまう前に適した組織体であることの確認が大切だ。AI導入を成功させるためには、技術面だけでなく組織運営の観点からも準備を整える必要がある。

続きを見る >

AIチャットボットの現実

チャットボット幻想と現実

人手不足や生産性向上が叫ばれる中、多くの企業で「問い合わせ業務の多くはAIチャットボットで代替できるのではないか」という期待が高まっている。確かに、人間と自然に会話できるAIの実現は、多くの技術者が長年抱き続けた夢でもあった。しかし、過去には言語理解や文脈の把握に技術的な限界があり、実用化には程遠いというのが現実だった。こうした期待と現実のギャップが、AIチャットボット導入の失敗要因となってきた。

チャットボットの進化

2000年代には、ルールベースやシナリオ型のチャットボットが登場し、定型的なカスタマーサポートなどで徐々に実用化され始めた。とはいえ、自然な対話というより「決められた会話」に近く、限定的な使い方にとどまっていた。ところが2020年代に入り、ディープラーニングの飛躍とともに自然言語処理の精度が格段に向上し、Google、Facebook、OpenAIといった技術企業が次々に大規模言語モデル(LLM)を発表したことで、チャットボットは“おしゃべりマシン”から会話パートナーへと進化した。

ChatGPTの衝撃

ChatGPTのような生成AIが登場し、誰でも使えるようになったことで、AIチャットボットの活用は一気に加速した。従来のようなFAQへの対応だけでなく、長文の文書作成や要約、翻訳、さらにはプログラミング支援など、より複雑で創造的な作業もこなせるようになっている。人間の知的作業領域に深く入り込み、単なる効率化ツールにとどまらない存在となった。もはや「使えるかどうか」ではなく「どう使うか」が問われるフェーズに突入している。

業界全体への波及

AIチャットボットの導入は、ビジネスだけでなく教育、医療、自治体など、多様な分野に広がっている。学生の学習サポートから医療問診の補助、行政窓口での自動対応まで、AIは生活の一部に組み込まれつつある。この変化は、かつてITインフラを支えてきた旧世代のエンジニア像を超える大転換だ。業務が高度化し、かつ柔軟性が求められる現代において、AIと協働する力が企業と個人の双方に求められている。

まとめ

AIチャットボットは、単なる業務効率化ではなく、人間の知的作業を補助する“共創”のパートナーである。ただし誤情報、倫理、プライバシーといった課題も存在する。こうした課題を踏まえ、社会全体でのルール整備と、使い方の成熟が必要だ。AI導入を成功させるには、「AIも使い様」という視点が欠かせない。ITの導入に乗り遅れてきた企業ほど、AI活用でも二の舞になりかねない。アタラキシアDXは、AI黎明期からの導入支援経験をもとに、技術とビジネスの橋渡しを支援している。

続きを見る >