ローコード開発≠安い

誤解されるコスト削減

実はローコード・ノーコードツールを使えば、開発が必要なくなるので安くなるというのは正しくない。たしかに、ノーコードツールを社内メンバーでCMSを使ってソフトを作るという場面は開発費用はかからない。

CMSとはコンテンツ・マネジメント・システムの略で、たとえばWebサイトのコンテンツを構成するテキストや画像、デザインなどを非エンジニアがプログラミングをせずに作成や管理できる仕組みのことである。ローコードツールはそれに加えて少しのプログラミング知識でシステムやツールを作成できることである。

開発手法の選択基準

断じてローコード開発だからといって安いわけではない。開発手法の特性による得手不得手を上手に使い分けるからトータルとして価格が安くなるということである。非エンジニア営業の金額調整という意味での判断でローコード開発を選択する場合は失敗することがある。

システム導入の本質理解

ローコード開発でも、システム導入の目的や条件が本質的にわかっていなければ、仕様要件のブレによって結果としてトータルが安くなることはない。これはローコード開発ということが問題なのではなく、フルスクラッチ開発であっても、SaaSと利用する場合であっても同じことが言える。

負債の危険

本来ローコード開発が適さない場合にも関わらず無理やりに合わせることで、プログラム部分の複雑性が増し、技術的負債となって大きな問題になっていく。結果として安くはならず、ローコード開発のメリットであるメンテナンス性までも損なうため、トータルで考えると高くなる。

まとめ

お客様の予算内で考えないといけないので、といった口癖があれば注意が必要である。クライアントの言いなり状態であれば、無理な要求は開発における仕様だけではないだろう。金額を含めた総合的な判断ができる人が、結果としてローコード開発を選択するわけである。

関連記事

内製化の成功術

IT報酬の実態

海外と比べて日本のITエンジニアの報酬が低いという記事をよく目にする。それもそのはずで、ハイクラスIT人材は都合のいい「何でも屋」にはならないからである。

導入時の誤解

ユーザー企業やシステムのユーザーは、IT化を行うことで業務が減るという先入観を持っていることがある。システム導入を着手したときの目的を忘れて、その時、その場の課題を優先して都合よくITエンジニアを動かしてしまう。また動くITエンジニアもそこにいたりする。

システムと医療

たとえば、「お腹が痛い」と病院にいって「すぐに切開しよう」とはならないはずだ。このようにシステムにもその他にも色々な条件が絡まり合っている。システムは取り扱う情報量や関連する業務が多く導入に時間がかかる。時間がかかる結果、最初の導入目的を忘れてしまうのである。

真のIT人材価値

ハイクラスIT人材はユーザー側の状況と心理を配慮しつつ、現場のプログラマーの状況と心理を考慮して陣頭指揮できる人材といってもよいだろう。心理というのは物の言い方だけではなく、無形の財産を構築したり業務にフィットさせたりするので、プロジェクトの円滑さが変わるのだ。

まとめ

小手先だけでシステムに関するプロジェクトを推進しようとすると、「言われた通りにやった」という受動的な参加者が増えてしまう。情シスのSIer化を回避するにはITエンジニアを「何でも屋」にさせて疲弊させないことも大切である。開発チームの雰囲気作りも非常に効果がある。

続きを見る >

ローコードで失敗する企業

導入の落とし穴

ローコード開発は、プログラミング知識がなくても業務アプリを構築できる手法として注目を集めている。しかし、導入企業の多くが期待した成果を得られず、プロジェクトが頓挫するケースが後を絶たない。「簡単に作れる」という触れ込みを鵜呑みにし、適切な計画なく導入を進めた結果、かえって業務効率が低下する事態も発生している。失敗の原因は、ローコードの特性を正しく理解していないことにある。

活きる業務

ローコードが真価を発揮するのは、定型的な業務プロセスの自動化や、シンプルなデータ管理アプリの構築である。例えば、申請承認ワークフロー、在庫管理、顧客情報の一元管理といった業務では、短期間で実用的なシステムを構築できる。また、現場部門が主体となって改善を繰り返す必要がある業務にも適している。成功企業に共通するのは、最初から大規模なシステムを目指さず、小さな業務改善から着手している点である。スモールスタートで効果を検証し、段階的に適用範囲を広げることで、確実に成果を積み上げている。

業務選定の失敗

一方で、ローコードには明確な限界がある。複雑なビジネスロジックを含む基幹システム、大量データのリアルタイム処理、高度なセキュリティ要件が求められるシステムには不向きである。失敗企業の典型的なパターンは、これらの領域にローコードを適用しようとするケースである。開発途中で機能の限界に直面し、結局フルスクラッチでの再開発を余儀なくされることも少なくない。また、ベンダーロックインのリスクも見過ごせない。特定のプラットフォームに依存することで、将来的な拡張性や他システムとの連携に支障をきたす事例が増えている。業務特性を見極めずに導入を急ぐことが、失敗の最大の要因である。

選定フレームワーク

ローコード導入を成功させるには、業務の棚卸しと適性判断が不可欠である。まず、対象業務の複雑性、データ量、連携要件を可視化し、ローコードで対応可能な範囲を明確にする。次に、将来的な拡張性や保守運用の観点から、長期的なコストを試算することが重要である。短期的な開発コスト削減だけを見て判断すると、運用フェーズで想定外の負担が発生する。成功企業は、ローコードと従来型開発を適材適所で使い分けている。すべてをローコードで賄おうとせず、業務特性に応じた最適な開発手法を選択することが、DX推進における重要な判断軸となる。

まとめ

ローコードは万能ではない。定型業務や小規模アプリには有効だが、複雑な基幹システムには不向きである。成功の鍵は、業務特性を正しく見極め、適切な領域に適用すること。導入前の計画策定と、段階的なアプローチが失敗を防ぐ最善策である。ツールの特性を理解し、戦略的に活用することでDX推進を加速させよう。

続きを見る >

生成AI活用術

生成AIと業務の未来

近年、ChatGPTをはじめとする生成AIが急速に普及し、ビジネスシーンでの活用が注目されている。文章作成、データ分析、アイデア創出など、これまで人間が時間をかけて行っていた業務を、AIが短時間で支援できるようになった。特に中小企業においても導入ハードルが下がり、生産性向上のための強力なツールとして認識されつつある。しかし、単にツールを導入するだけでは効果は限定的である。業務フローに適切に組み込み、活用方法を理解することが成功の鍵となる。

5つの活用法

生成AIは様々な業務シーンで活用できる。まず、メール文面や報告書などの文書作成では、下書きの自動生成により大幅な時間短縮が可能だ。次に、会議の議事録作成では、音声データから要点を抽出し整理できる。カスタマーサポートでは、よくある質問への回答案を即座に生成し、対応品質の向上と担当者の負担軽減を実現する。マーケティング分野では、SNS投稿文やキャッチコピーのアイデア出しに活用でき、クリエイティブな業務も効率化される。さらにデータ分析では、複雑なデータから傾向を読み取り、レポート作成まで支援してくれる。

注意点

一方で、生成AI導入には課題も存在する。最も多い問題は、社員のITリテラシーの差による活用格差である。一部の社員だけが使いこなし、組織全体の生産性向上につながらないケースが見られる。また、生成された内容の精度確認を怠り、誤った情報をそのまま使用してしまうリスクもある。セキュリティ面では、機密情報を不用意にAIに入力してしまう情報漏洩の懸念がある。さらに、AIに過度に依存することで、社員の思考力や創造性が低下する可能性も指摘されている。これらの課題に対しては、適切な社内ガイドラインの策定、定期的な研修の実施、そして人間の判断を最終確認として残す仕組みづくりが重要である。

活用の3原則

生成AIを効果的に活用するためには、いくつかのポイントがある。第一に、AIはあくまで「支援ツール」であり、最終的な判断は人間が行うという原則を徹底することである。第二に、段階的な導入を心がけ、小規模なプロジェクトから始めて成功体験を積み重ねることが大切だ。第三に、定期的な効果測定を行い、どの業務でどれだけの時間削減ができたかを可視化することで、改善点が明確になる。また、社内でベストプラクティスを共有し、ナレッジを蓄積することも重要である。AIと人間がそれぞれの強みを活かし、協働することで、単なる効率化を超えた価値創造が可能になる。

まとめ

生成AIは業務効率化の強力な武器だが、導入方法次第で効果は大きく変わる。適切な活用シーンの選定、社員教育、セキュリティ対策を行うことで、組織全体の生産性を飛躍的に向上させることができる。まずは小さく始めて、徐々に活用範囲を広げていくことが成功への近道である。

続きを見る >