ローコード開発≠安い

誤解されるコスト削減

実はローコード・ノーコードツールを使えば、開発が必要なくなるので安くなるというのは正しくない。たしかに、ノーコードツールを社内メンバーでCMSを使ってソフトを作るという場面は開発費用はかからない。

CMSとはコンテンツ・マネジメント・システムの略で、たとえばWebサイトのコンテンツを構成するテキストや画像、デザインなどを非エンジニアがプログラミングをせずに作成や管理できる仕組みのことである。ローコードツールはそれに加えて少しのプログラミング知識でシステムやツールを作成できることである。

開発手法の選択基準

断じてローコード開発だからといって安いわけではない。開発手法の特性による得手不得手を上手に使い分けるからトータルとして価格が安くなるということである。非エンジニア営業の金額調整という意味での判断でローコード開発を選択する場合は失敗することがある。

システム導入の本質理解

ローコード開発でも、システム導入の目的や条件が本質的にわかっていなければ、仕様要件のブレによって結果としてトータルが安くなることはない。これはローコード開発ということが問題なのではなく、フルスクラッチ開発であっても、SaaSと利用する場合であっても同じことが言える。

負債の危険

本来ローコード開発が適さない場合にも関わらず無理やりに合わせることで、プログラム部分の複雑性が増し、技術的負債となって大きな問題になっていく。結果として安くはならず、ローコード開発のメリットであるメンテナンス性までも損なうため、トータルで考えると高くなる。

まとめ

お客様の予算内で考えないといけないので、といった口癖があれば注意が必要である。クライアントの言いなり状態であれば、無理な要求は開発における仕様だけではないだろう。金額を含めた総合的な判断ができる人が、結果としてローコード開発を選択するわけである。

関連記事

ローコード開発とAI活用

AIとローコードの融合

ローコード開発プラットフォームの普及により、非エンジニアでもアプリケーション開発が可能になった現在、生成AIの活用が大きな注目を集めている。ChatGPTやCopilotなどのAIツールを組み合わせることで、開発スピードがさらに向上すると期待されているが、本当にすべてのローコード開発にAIが必要なのだろうか。コスト、品質、保守性など多角的な視点から、AI導入の真の価値を見極めることが、企業のDX戦略において極めて重要になっている。

コード生成の現実

生成AIによるコード生成は確かに魅力的だが、実際の品質には課題がある。AIが生成するコードは、単純な処理であれば高品質だが、複雑なビジネスロジックや例外処理が絡むと、不完全なコードが生成されることが少なくない。さらに深刻な問題は要件定義の壁である。AIは与えられたプロンプトに基づいてコードを生成するが、曖昧な要件や暗黙の前提条件を正確に理解することは困難である。結果として、開発者は生成されたコードを詳細に検証し、修正する必要があり、期待したほどの効率化が実現しないケースも多く見られる。

保守性のコスト

AIを活用したローコード開発において、最も見落とされがちなのが保守性の課題である。AI生成コードは、その時点では動作しても、後から読み解くことが困難な構造になっていることがある。変数名が不適切だったり、処理の意図が不明瞭だったりすると、半年後に修正が必要になった際、開発担当者が変わっていた場合、大きな手戻りが発生する。また、AIツールのバージョンアップや仕様変更により、過去に生成されたコードとの互換性が失われるリスクも存在する。初期開発のスピードを重視するあまり、長期的な運用コストが膨らんでしまっては本末転倒である。真のDX推進には、目先の効率化だけでなく、持続可能な開発体制の構築が不可欠なのである。

適切な見極め

ローコード開発におけるAI活用は、すべてのケースで必須というわけではない。定型的な画面開発や単純なCRUD操作など、パターン化された開発にはAIが有効だが、複雑なビジネスロジックや高度なセキュリティが要求される領域では、人間による丁寧な設計と実装が重要である。重要なのは、プロジェクトの性質、チームのスキルレベル、長期的な保守計画を考慮した上で、AIを活用すべき領域と従来手法を維持すべき領域を明確に区分することである。段階的にAIツールを導入し、効果を検証しながら適用範囲を拡大していく慎重なアプローチが、失敗リスクを最小限に抑え、真の生産性向上につながる。

まとめ

ローコード開発へのAI導入は、万能の解決策ではなく、適材適所で活用すべきツールである。コード生成の質、要件定義の難しさ、保守性の課題を十分に理解した上で、自社の開発体制に合った形でAIを取り入れることが成功の鍵となる。短期的な効率化だけでなく、長期的な運用まで見据えた戦略的な判断が求められている。

続きを見る >

リーダーの多忙による弊害

危険な繁忙化

なぜか忙しくしているPMやリーダーとなるSEがいれば危険信号である。リーダーが忙しくなると全体的な最適化や効率的な運用ができていない可能性がある。結果として、無駄に費用がかかったり、技術的負債が大きくなったりする。

役割分担の歪み

システムのユーザー側から見ると、SEという見え方しかしないと思われるが、実際はシステムの運用や開発には細かな作業分担が発生する。この作業分担ができていない場合は窓口のSEが余計な作業を行っている可能性がある。役割分担の不均衡がもたらす忙しさではなく、まったく仕事としてやらなくてもよいような事に時間を使っていて忙しい場合がある。

プロセスの確立

たとえば、プログラムが解析できる人をリーダーとしてしまうと、開発者に手取り足取り指示をしてしまうことがある。もし、リーダーがプログラムレビューなどの作業や、開発者にプログラム上の細かな指示をしている場合は注意が必要である。何を基準にプログラムレビューや指示を行うのか、という仕事を見える化し、仕組化することがリーダーの務めである。

俯瞰的視点

木を見て森を見ずという言葉があるように、リーダーとなる人は指針を作ったりメンバーをプロジェクト成功へ導く役割がある。リーダーが開発メンバーと同じように木ばかりを見ているようであれば、森を見る人が非エンジニアであるユーザー側となってしまうことが考えられる。

まとめ

誰が森を見るのか、リーダーやPMが常に忙しそうにしている場合は、何に時間を使っているのか調査する必要がある。実はここがボトルネックになっていてプロジェクトの進行が思うようにいかなかったり、頻繁にリスケが発生していることも多くある。しかし、これは本人にヒアリングするだけでは表面化しないため、ユーザー側の担当者やプログラマーなどの周辺人員から浮き彫りにすることが望ましい。

続きを見る >

2026年DX計画の立て方

なぜ今なのか

2026年は企業のDX推進において大きな転換点となる年だ。政府のデジタル・AI補助金制度が本格始動し、単なるITツール導入ではなく、業務そのものを効率化する仕組みづくりが求められている。AI、IoT、ローコードといったテクノロジーは個別に活用するのではなく、統合的な戦略のもとで導入することで初めて真の効果を発揮する。2025年の今こそ、来年に向けた具体的な計画策定を開始すべきタイミングである。

三技術の役割

DX計画を成功させるには、まず各技術の役割を正しく理解することが重要だ。AIはデータを分析し判断・予測を行うソフトウェアであり、IoTはセンサーを通じてデータを収集するハードウェアの仕組みである。この二つは補完関係にあり、IoTが集めたデータをAIが分析することで、異常検知や需要予測といった高度な自動化が実現する。一方、ローコードはプログラミング知識が少なくてもアプリケーションを構築できる開発手法で、IT人材不足を解消する手段として注目されている。生成AIとの連携により、開発スピードは従来の数倍にまで向上している。

統合戦略の要点

三つの技術を統合した戦略を設計する際には、いくつかの重要なステップがある。第一に、自社のAI成熟度を客観的に評価することだ。戦略、人材、データ、ガバナンス、運用、文化の六つの軸で現状を診断し、業界平均と比較しながら目標を設定する。第二に、大規模導入ではなく「まず一業務」から改善を始めることである。請求書処理や在庫管理など、効果を数字で示しやすい領域を選定し、小さな成功体験を積み重ねる姿勢が重要となる。第三に、現場が使い続けられる仕組みを重視することだ。高機能なツールを導入しても、現場に定着しなければ意味がない。

実行手順

2026年のDX計画を実行するための具体的な手順を整理する。まず今月から着手すべきは、AI成熟度診断の実施と、ROI最大化が見込める業務領域の特定だ。ノーコード・ローコードツールを活用した最小機能でのPoC(概念実証)を開始し、四半期ごとにAI推進委員会でレビューを行う体制を構築する。補助金申請を見据え、AIやDXが業務のどこに組み込まれるかを可視化した資料を準備することも欠かせない。課題とAIのつながりを明確に説明できれば、審査において大きなアドバンテージとなる。経営層が先頭に立ち、全社一丸となって取り組む姿勢を示すことが成功への鍵である。

まとめ

2026年のDX計画では、AI・IoT・ローコードを個別ではなく統合的に活用する戦略設計が求められる。成熟度診断で現状を把握し、小さな成功を積み重ねながら段階的に拡大していくアプローチが効果的だ。補助金活用も視野に入れ、今から計画策定を開始することが重要である。

続きを見る >