開発の相場

相場の不在

フルスクラッチでのシステム開発に相場はない。相場とは商品が一般的に流通している商品など数が多い場合は、競争原理も働き、金額がある一定の範囲に収まってくるものである。

建築との差異

たとえば、一戸建て建築であれば、建物の規模と資材、それに加えて職人の人工で金額が決まる。フルスクラッチのシステム開発は、つまり極めて特殊な特注品を作るようなものであるため、システム開発に相場という概念が基本的にはないのである。

人件費の実態

システム(ソフトウェア)は一戸建てのように、基本的には材料費はかからない。システム開発の費用のほとんどは人件費である。大工職人の人工と同じように人月単価と呼ばれるSE1人が1ヶ月働く金額で相場を知ることができるのである。

工期の変動

建物を建てることと比べるとシステムやソフトウェアは無形の物となるため、1ヶ月の労働力を推し量ることは困難である。個人のプログラミングの早さによって、納期が早くなったり遅くなったりするのである。

まとめ

SEは過去のプロジェクト参画実績から、同じようなプロジェクトに何度も参画していれば手練れでスキルが高いと評価される。システムに関わる人材の評価が困難な点は、プロジェクトに参画する経験値と、本当の意味でのスキルが比例するわけではないことである。本当の意味でのスキルとはプロジェクトを成功させられるかどうかを指すのである。

関連記事

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >

DX前の業務整理

DX推進の落とし穴

多くの企業がDX推進を急ぐあまり、業務改善ツールやシステムの導入を最優先にしてしまう傾向がある。しかし、現状の業務プロセスを整理しないままツールを導入することは、非効率な作業をそのままデジタル化するだけに終わる危険性がある。DXの本質は単なるIT化ではなく、業務そのものの変革にある。

非効率のデジタル化の罠

いきなりツールを導入すると、既存の非効率な業務フローがそのままシステムに組み込まれてしまう。例えば、不要な承認プロセスや重複した作業がデジタル上で再現され、かえって業務が複雑化するケースも少なくない。また、現場の実態に合わないツールを選定してしまい、導入後に使われなくなるという失敗も頻発している。結果として、多大なコストと時間を費やしながら、期待した効果を得られないまま頓挫するプロジェクトが後を絶たない。

業務可視化から始めるDX

DXを成功させるためには、ツール導入の前に徹底した業務整理が不可欠である。まず、現在の業務フローを可視化し、各プロセスの目的と必要性を検証する。次に、重複作業や不要な承認ステップを洗い出し、業務そのものをシンプルにする。この段階で「なぜこの作業をしているのか」を問い直すことが重要である。形骸化したルールや慣習的に続けてきた作業を見直すことで、本当に必要な業務が明確になる。整理された業務プロセスに対して最適なツールを選定することで、初めてDXの効果を最大化できる。

業務整理の成果

業務整理を先行させることで、ツール導入の目的が明確になり、適切な選定が可能になる。整理された業務フローは現場の理解も得やすく、ツールの定着率も大幅に向上する。さらに、業務整理の過程で発見された課題は、DXだけでなく組織全体の改善にもつながる。属人化していた業務の標準化や、部門間の連携強化など、副次的な効果も期待できる。DXは一度きりのプロジェクトではなく、継続的な改善活動である。まず業務を整理し、その上でツールを活用するという順序を守ることが、持続可能なDX推進の鍵となる。

まとめ

DX成功の鍵は、ツール導入前の業務整理にある。非効率な業務をそのままデジタル化しても効果は得られない。まず業務フローを可視化し、不要なプロセスを排除してから最適なツールを選定することで、DXの本来の効果を発揮できる。

続きを見る >

SEのいうバッファとは

バッファの真意

見積りや作業スケジュールに際して、エンジニアやシステム会社から「バッファである」という回答を受けたことはないか。システム会社が言うバッファとは保険を意味していることがほとんどである。

不確実なバッファ

非エンジニアは見積りのバッファを聞いたときに、無駄なのではないかと感じる。「念のため」に必要なバッファは、裏を返すと知識がないから調べないと分からないので不安であるという意味である。知識があり、「念のため」が必要なければバッファはないと考えられる。

知識の不足

ほとんどのシステム構築プロジェクトは、バッファが多いほうが知識がないのに見積りが高くなるという矛盾が発生することになる。そう考えると「バッファ」とは「無駄」に聞こえるかもしれない。

本質のバッファ

さて、このバッファについて本来あるべき姿を説明する。本当にやってみなければ分からないといった高度な技術を使うときに、未知の領域に関するスケジュールの影響を勘案し、計画された期間のことをバッファと見るべきである。

まとめ

単なるシステム構築プロジェクトにおいて「無駄を削ればよい」というのは非エンジニアから見ると合理的でコストの軽減にもなる。しかし、研究開発分野において無駄を削ることは必ずしも合理的ではない。発想が乏しくなるからである。

続きを見る >