開発の相場

相場の不在

フルスクラッチでのシステム開発に相場はない。相場とは商品が一般的に流通している商品など数が多い場合は、競争原理も働き、金額がある一定の範囲に収まってくるものである。

建築との差異

たとえば、一戸建て建築であれば、建物の規模と資材、それに加えて職人の人工で金額が決まる。フルスクラッチのシステム開発は、つまり極めて特殊な特注品を作るようなものであるため、システム開発に相場という概念が基本的にはないのである。

人件費の実態

システム(ソフトウェア)は一戸建てのように、基本的には材料費はかからない。システム開発の費用のほとんどは人件費である。大工職人の人工と同じように人月単価と呼ばれるSE1人が1ヶ月働く金額で相場を知ることができるのである。

工期の変動

建物を建てることと比べるとシステムやソフトウェアは無形の物となるため、1ヶ月の労働力を推し量ることは困難である。個人のプログラミングの早さによって、納期が早くなったり遅くなったりするのである。

まとめ

SEは過去のプロジェクト参画実績から、同じようなプロジェクトに何度も参画していれば手練れでスキルが高いと評価される。システムに関わる人材の評価が困難な点は、プロジェクトに参画する経験値と、本当の意味でのスキルが比例するわけではないことである。本当の意味でのスキルとはプロジェクトを成功させられるかどうかを指すのである。

関連記事

技術的負債の返済方法

負債の本質

技術的負債には、設計負債やコード負債がある。金銭的な負債であれば借入金やマイナスの表記で数字化できるのだが、技術的負債においては数字化できないことがとても難しい点である。経営に関するほとんどのことは定量化や定性化が可能だが、たとえば企業創業者の発想する「野生の勘」を直接的に数字化できないように技術的負債も一筋縄では見える化しない。

設計時の対策

技術的負債の中でもコード負債については、システム開発の現場からよく発想されるリファクタリングや再構築などを行うことで比較的わかりやすい返済方法となる。知らない人が作ったプログラムや古くなったプログラムのバージョンなど、リスクを表現し対応することができる。何よりも最初の企画設計段階で負債が積みあがりにくい仕組みを考えることが大切である。

高負担な設計

技術的負債の中でも利息の高い負債が設計負債である。単体機能における設計であれば、モジュールごとの再設計によって返済が可能である。しかし、プログラムは複数のモジュールが絡まり合っていることがほとんどなので、複雑なオペになってしまう。また、稼働中のシステムにわざわざ再設計したプログラムを導入するリスクに対して、得れるメリットも少ないので見過ごされがちである。設計能力は例えば、紙というオブジェクトのメソッド(振る舞い)とプロパティ(保持する情報)を聞いて正しい答えが帰ってくれば多少安心であろう。紙の振る舞いは燃えるであり保持する情報は面積などがある。

根本的解決

しかし、技術的負債はこのように目に見えやすい設計負債やコード負債が致命的になることは少なく、やはりその上層でどのような指針に基づいてシステム運用がなされてきたか、また長期視点で一貫したメンテナンスを行うことが必要である。システムの維持には保守費用や運用費用を払っていることが多いと思うが、これだけでは将来の負債を減らしていくことはできない。やはり、鳥の目を持つITコンサルタントやITアナリストなどの役割を持つメンバーが必要である。

まとめ

ITコンサルタントやアナリストは、すぐに利益も生まない、経費を削減するわけでもないといったコストセンターとしてのポジションなので、あまり起用していない中小企業も多いようである。投資に対する効果が見えにくいのは、料理でいう香辛料と同じなのかもしれない。その少しの投資が未来を大きく変えることになる。IT技術は日進月歩で発展するからである。

続きを見る >

2025年AI活用トレンド

2025年のAI活用

2025年は企業におけるAI活用が実証実験から本格導入へと移行する転換期となっている。生成AI市場は急速な拡大を続けており、専門人材の不足を補うソリューションとして中堅企業にも急速に普及が進んでいる。大手企業では数百億円規模の投資計画が発表され、業務効率化だけでなく新規事業創出への期待も高まっている。本記事では、2025年に押さえておくべきAI活用の主要トレンドを解説する。

自律型AIエージェントの台頭

2025年の最大のトレンドは「AIエージェント」の台頭である。エージェント型AIは、ユーザーが設定した目標に向けて自律的に計画を立て行動する新しいAIシステムであり、従来のAIアシスタントとは異なり人間からの直接的な指示がなくても主体性を持って行動できる点が特徴である。また、画像、音声、テキストを統合的に処理するマルチモーダル技術の進化により、業務プロセスは新たな段階へと移行している。複数の情報形式を同時に分析することで、これまで見えなかった相関関係の発見が可能となり、意思決定の精度向上に貢献している。

成功と失敗の分岐点

一方で、AI導入には課題も存在する。2024年の実績から、導入効果に大きな差が生じていることも明らかになってきた。成功企業と失敗企業の分岐点として、経営層のコミットメント、段階的な展開計画、現場との密な連携が挙げられている。さらにAIの過剰な期待の時代から、AIの成果が問われる時代へと移行しており、企業は投資から明確で測定可能な価値を生み出す準備が求められている。加えて、AIガバナンスと偽情報対策の重要性も増しており、AIの責任ある活用と安全な運用が求められている。セキュリティリスクへの対応も含め、戦略的なAI導入計画の策定が不可欠となっている。

段階的導入の重要性

AI活用を成功させるためには、いきなり大規模導入を目指すのではなく、自社の課題を正確に把握した上で小規模な実証実験から始めることが推奨される。成功企業に共通するのは、経営層の強いコミットメント、段階的な展開計画、そして現場との密な連携である。特に重要なのは、AIを単なるツールとしてではなく、業務プロセス全体を見直す契機として捉えることである。現場の声を反映しながら、継続的な改善サイクルを回すことで、投資対効果を最大化できる。外部の専門家による伴走支援を受けながら、自社に最適なAI活用戦略を構築していくことが成功への近道となるであろう。

まとめ

2025年のAI活用は、AIエージェントやマルチモーダル技術の進化により大きな転換期を迎えている。しかし、成果を出すためには段階的な導入計画と現場との連携が不可欠である。ROIの実証やガバナンス体制の構築も含め、戦略的なアプローチでAI活用を推進していくことが求められている。

続きを見る >

Excel業務のDX化は本当に必要か

DX化の現状

多くの企業でExcel業務のDX化が話題になっている。「Excelは古い」「すぐにシステム化すべき」という声も聞かれるが、本当にすべてのExcel業務をDX化すべきなのだろうか。実は、やみくもなDX化は逆効果になることも少なくない。Excel業務のDX化には正しい順序と判断基準が必要である。本記事では、DX化の利点を理解しながら、適切なアプローチについて考えていく。

DX化の利点

Excel業務をDX化することで得られる利点は確かに多数ある。まず、データの一元管理により情報の正確性が向上し、複数人での同時編集や更新作業がスムーズになる。次に、自動化による作業時間の大幅な削減が可能である。手作業で行っていた集計や転記作業から解放されることで、より付加価値の高い業務に時間を使えるようになる。さらに、データ分析の高度化により、経営判断のスピードと精度が向上する。これらの利点は、企業の競争力強化に直結する重要な要素である。

DX化の落とし穴

しかし、DX化を急ぐあまり失敗するケースも多く見られる。業務フローが整理されていない状態でシステムを導入すると、非効率な業務がそのままシステム化されてしまう。また、現場の声を聞かずにツールを選定すると、使いにくいシステムが現場に定着せず、結局Excelに戻ってしまうこともある。さらに、すべてを一度に変えようとすると、従業員の負担が大きくなり、業務が混乱する。投資したコストに見合う効果が得られず、DX化自体が目的化してしまう危険性もある。適切な準備なしのDX化は、かえって生産性を下げる結果を招くのである。

正しい進め方

Excel業務のDX化を成功させるには、段階的なアプローチが不可欠である。まず、現状の業務フローを可視化し、本当に必要な作業とムダな作業を明確に区別する。次に、Excelで十分な業務と、システム化すべき業務を見極めることが重要である。すべてをシステム化する必要はない。その上で、優先順位をつけて小さく始め、効果を確認しながら展開していく。従業員のITリテラシーに応じた教育も並行して行うことで、スムーズな移行が実現する。DX化は手段であり目的ではない。自社の状況に合わせた最適な方法を選ぶことが、真の業務改善につながるのである。

まとめ

Excel業務のDX化は、正しく進めれば大きな効果をもたらすが、順序を誤ると逆効果になる。利点を理解しつつ、自社の状況を冷静に分析し、段階的に進めることが成功の鍵である。やみくもなシステム化ではなく、業務改善を第一に考えた戦略的なアプローチを取るべきである。

続きを見る >