開発の相場

相場の不在

フルスクラッチでのシステム開発に相場はない。相場とは商品が一般的に流通している商品など数が多い場合は、競争原理も働き、金額がある一定の範囲に収まってくるものである。

建築との差異

たとえば、一戸建て建築であれば、建物の規模と資材、それに加えて職人の人工で金額が決まる。フルスクラッチのシステム開発は、つまり極めて特殊な特注品を作るようなものであるため、システム開発に相場という概念が基本的にはないのである。

人件費の実態

システム(ソフトウェア)は一戸建てのように、基本的には材料費はかからない。システム開発の費用のほとんどは人件費である。大工職人の人工と同じように人月単価と呼ばれるSE1人が1ヶ月働く金額で相場を知ることができるのである。

工期の変動

建物を建てることと比べるとシステムやソフトウェアは無形の物となるため、1ヶ月の労働力を推し量ることは困難である。個人のプログラミングの早さによって、納期が早くなったり遅くなったりするのである。

まとめ

SEは過去のプロジェクト参画実績から、同じようなプロジェクトに何度も参画していれば手練れでスキルが高いと評価される。システムに関わる人材の評価が困難な点は、プロジェクトに参画する経験値と、本当の意味でのスキルが比例するわけではないことである。本当の意味でのスキルとはプロジェクトを成功させられるかどうかを指すのである。

関連記事

オフショア開発における契約形態の選択と、重要なポイント

オフショア開発には、受託開発、ラボ開発、そして折衷型の3つの契約形態が存在します。それぞれの契約形態には特徴と課題がありますが、最終的にここで「折衷型」と述べているものに集約していく傾向があります。

受託開発契約とその特徴

受託開発契約は、成果物の納品を約束する契約形態です。この形態では、事前に成果物の定義を明確にし、それに基づいて開発を進めます。受託開発契約はソフトウェア開発においてシンプルな形態と言えますが、成果物の定義を明確にすることは容易ではありません。実際の開発作業では、概念上の定義と現実の制約との間で調整が必要となる場合があります。

ラボ開発契約とその特徴

ラボ開発契約は、クライアントが直接開発者に対して指示を出す契約形態です。クライアントは開発者を拘束し、その時間を購入します。この形態は、日本のSES契約に近いものですが、ラボ開発では開発者は非常駐となります。時間単位で開発者の貢献を購入するため、時間の品質によって成果物の品質が保証されるわけではありません。開発者によって同じ時間内でも成果物の差が生じることがあります。

折衷型契約の意義とその特徴

折衷型契約は受託開発契約とラボ開発契約の折衷案として採用されます。この契約形態では、成果物の定義を柔軟にし、一定の作業時間も確保しながら、基本的にボトムアップ型で開発を進めていきます。オフショア開発においては、ビジネスモデルやクライアントの要求を理解し、中核的な開発人材(例えば、ブリッジエンジニア)を確保することが重要です。中核的な人材はクライアントのビジネスについて深い洞察を持ち、長期的な関係を築くことができます。このような中核人材をラボ契約で時間拘束的に確保し、プロジェクトが大型化したときはスポットで追加の受託契約を行い、人を追加で確保するというものです。

折衷案に収斂していく実際のプロジェクト

受託開発としてスタートしたプロジェクトでも、ラボ開発としてスタートしたプロジェクトでも、ベトナムでのオフショア開発が成功し長く続いている案件は、最終的に折衷案に収斂していく傾向があるようです。多くの場合は海外開発拠点は、日本の開発プロジェクトの外付け工場という位置づけになりますので、クライアントのビジネスをよく知った開発者を確保しつつスケーラビリティを確保するという両方が求められることとなり、このような形に落ち着くのでしょう。

もしこの形をゴールとするのならば、下記の2点に注目するのが良いでしょう。

(a) 長期契約が必要なこと:クライアントのビジネスモデルや独自の用語を理解し、本当に重要な要素を把握するためには時間が必要です。クライアントのビジネスに寄り添いながら開発を行うためには、最低でも1年以上の長期契約が必要です。

(b) ブリッジエンジニアを始めとする中核的人材の確保が大切であること:中核的な開発人材は、クライアントのビジネスをよく理解し、ビジネスの要件に応じて開発を進めることができる人材です。彼らは長期的なパートナーシップを築き、クライアントのビジネス成果に貢献します。そのため、オフショア開発においては、ブリッジエンジニアなどの中核的な人材の確保が極めて重要です。

オフショア開発においては、契約形態の選択とビジネス戦略の統合が成功の鍵となります。ビジネスの長期的な視点と中核的な人材の確保を重視することで、効果的なオフショア開発を実現することができるでしょう。

続きを見る >

DX現場の生成AIツール2025

DX推進とAIツール活用

2025年現在、DX推進において生成AIツールの活用は避けて通れないテーマとなっている。調査によれば国内ソフトウェア開発におけるAIコード生成の利用率は49%に達し、資料作成においても従来の60%以上の時間短縮が報告されている。しかし現場では「どのツールを選べばよいかわからない」「導入したものの活用が進まない」という声も多い。本記事では、デザイン・ドキュメント作成・コーディング・業務自動化の4分野において、DX担当者が即活用できる実践的なツールを具体的に紹介する。

デザイン・資料作成の効率化

デザイン・UI/UX分野では「Figma AI」と「Canva AI」が二大勢力として君臨している。Figma AIはプロトタイプ生成やレイヤー名の自動整理が可能で、Config2025で発表された「Figma Make」ではテキスト指示だけでコード生成まで実現する。Canvaは非デザイナー向けに画像編集・自動翻訳・音声生成を統合し、SNS投稿やプレゼン資料を短時間で仕上げられる点が強みである。資料作成分野では「Gamma」がテキスト入力のみでプロ級スライドを自動生成し、「Notion AI」は要約・文章生成・議事録作成をワンストップで対応する。Microsoft 365環境なら「Copilot」がWord・Excel・PowerPointと連携し、既存資産を活かした効率化が図れる。

コーディング支援AIの進化

コーディング・開発分野では「GitHub Copilot」が依然としてデファクトスタンダードの地位を維持している。VS CodeやJetBrains IDEとの深い統合によりコード補完・生成・テスト作成をシームレスに実行でき、NTTドコモやカカクコムなど大手企業での導入事例も増加中である。一方で2023年登場の「Cursor」はAIネイティブエディタとして進化を続け、2025年10月のバージョン2.0では専用モデル「Composer 1」とマルチエージェント実行機能を搭載した。プロジェクト全体を理解しながら複数ファイルを横断編集できる点が特徴である。さらにAnthropicの「Claude Code」はターミナル上で動作し、自然言語指示だけでコード生成からデバッグ・リファクタリングまで対応する。開発チームの規模や既存環境に応じた使い分けが重要となる。

業務自動化によるDX改革

業務自動化分野では「Microsoft Power Automate」がMicrosoft 365との統合度の高さで優位性を発揮している。2025年のアップデートではAIファーストの設計思想のもと、自然言語でフローを作成・編集できるCopilot機能が強化された。「Zapier」は7,000以上の外部サービスと連携可能で、異なるアプリ間のデータ転送を直感的なUIで自動化できる。エンタープライズ向けでは「UiPath」が世界的シェアを持ち、教育コンテンツとコミュニティが充実している点で社内人材育成にも適している。ただしツール導入においては、セキュリティポリシーの策定・情報漏洩対策・ライセンス管理が不可欠である。生成AIが業務データを扱う以上、社内ルールに沿った運用設計を先行させることが成功の分岐点となる。

続きを見る >

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >