リーダーの多忙による弊害

危険な繁忙化

なぜか忙しくしているPMやリーダーとなるSEがいれば危険信号である。リーダーが忙しくなると全体的な最適化や効率的な運用ができていない可能性がある。結果として、無駄に費用がかかったり、技術的負債が大きくなったりする。

役割分担の歪み

システムのユーザー側から見ると、SEという見え方しかしないと思われるが、実際はシステムの運用や開発には細かな作業分担が発生する。この作業分担ができていない場合は窓口のSEが余計な作業を行っている可能性がある。役割分担の不均衡がもたらす忙しさではなく、まったく仕事としてやらなくてもよいような事に時間を使っていて忙しい場合がある。

プロセスの確立

たとえば、プログラムが解析できる人をリーダーとしてしまうと、開発者に手取り足取り指示をしてしまうことがある。もし、リーダーがプログラムレビューなどの作業や、開発者にプログラム上の細かな指示をしている場合は注意が必要である。何を基準にプログラムレビューや指示を行うのか、という仕事を見える化し、仕組化することがリーダーの務めである。

俯瞰的視点

木を見て森を見ずという言葉があるように、リーダーとなる人は指針を作ったりメンバーをプロジェクト成功へ導く役割がある。リーダーが開発メンバーと同じように木ばかりを見ているようであれば、森を見る人が非エンジニアであるユーザー側となってしまうことが考えられる。

まとめ

誰が森を見るのか、リーダーやPMが常に忙しそうにしている場合は、何に時間を使っているのか調査する必要がある。実はここがボトルネックになっていてプロジェクトの進行が思うようにいかなかったり、頻繁にリスケが発生していることも多くある。しかし、これは本人にヒアリングするだけでは表面化しないため、ユーザー側の担当者やプログラマーなどの周辺人員から浮き彫りにすることが望ましい。

関連記事

オオカミ少年化の弊害

SE常駐の負連鎖

システム開発会社側の立場からすると、時間ばかり取るよくないクライアントはできるだけ減らさないと、他の優良クライアントに迷惑がかかる。特に横にいてくれないと進めることができないというニーズが、SE常駐の常態化してしまっている要因である。

常駐要請の心理

SEへの安心感の欠如が常駐しないといけない理由のひとつである。隣にいれば、何かあった時にすぐに指示が出せる。たとえば、サーバが止まったときにすぐに復旧させることが可能である。

対症療法の克服

隣にSEを常駐させて対応できてしまうがゆえに対処療法になってしまいがちである。本来であれば、サーバが止まらないようにすべきであり、リカバリのプランがしっかりと計画されていることが理想である。

脱属人化の施策

SE側も、すぐに復旧させられるからといった怠慢により、事前に問題や対策を考えておくといった準備を怠ってしまう。そう考えると、発注側のITリテラシーも非常に重要である。属人化しないように仕組化するにはどうするかを常に整理する意識を持つことが大切である。

まとめ

発注側は感情だけでプロジェクトを遂行すると、何かあった時に何でもSEを急かしてしまう。これによって、発注側はオオカミ少年化してしまうため、本当に急がないといけないときに対応が遅れてしまうのである。

続きを見る >

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >

思考と決断のPM力

PMの真価

スキルシート上にあるPMというのは、どういった開発言語や開発環境などを使ってきたかという内容であることが多く、SEの延長という意味合いが強く残っている。もし、期待するポジションが発想力や提案力にあるとすれば、姿勢をみることが大切となる。

従順の呪縛

就職氷河期と呼ばれる世代より上の年齢層では、常に従うことを幼少期から叩き込まれていると考えられる。日本では「禁止」か「許可」かを常に意識しながら仕事をしており、「許可されるまでは禁止されている」と考えているのではないかと推察される。

失敗からの成長

正しいか、間違っているか、の判断基準しか持ち合わせていない場合、何か問題が発生したときに時間を遡ってどこで判断を間違えたのかを追求する。それは大切なことであるが、実際のプロジェクトでは誤ったことを反省しつつ修正しながら進むことが大切である。

判断力の真髄

エンジニア出身のPM(開発プロジェクトのPM)だと、禁止か許可かというデジタルのような見方をしている人もいる。特に今日のシステムに関するプロジェクトでは、ゼロかイチだけでは判断できないような、ウエットでアナログな状況判断が必要となる。

まとめ

たとえ能力の高いPMだったとしても、仕事になると発想することや作ることの楽しみより、ミスによる懲罰を恐れたりするために、無難で当たり障りのない判断をしがちである。システムに関するプロジェクトがなかなか前へ進まない理由でもある。

続きを見る >