リーダーの多忙による弊害

危険な繁忙化

なぜか忙しくしているPMやリーダーとなるSEがいれば危険信号である。リーダーが忙しくなると全体的な最適化や効率的な運用ができていない可能性がある。結果として、無駄に費用がかかったり、技術的負債が大きくなったりする。

役割分担の歪み

システムのユーザー側から見ると、SEという見え方しかしないと思われるが、実際はシステムの運用や開発には細かな作業分担が発生する。この作業分担ができていない場合は窓口のSEが余計な作業を行っている可能性がある。役割分担の不均衡がもたらす忙しさではなく、まったく仕事としてやらなくてもよいような事に時間を使っていて忙しい場合がある。

プロセスの確立

たとえば、プログラムが解析できる人をリーダーとしてしまうと、開発者に手取り足取り指示をしてしまうことがある。もし、リーダーがプログラムレビューなどの作業や、開発者にプログラム上の細かな指示をしている場合は注意が必要である。何を基準にプログラムレビューや指示を行うのか、という仕事を見える化し、仕組化することがリーダーの務めである。

俯瞰的視点

木を見て森を見ずという言葉があるように、リーダーとなる人は指針を作ったりメンバーをプロジェクト成功へ導く役割がある。リーダーが開発メンバーと同じように木ばかりを見ているようであれば、森を見る人が非エンジニアであるユーザー側となってしまうことが考えられる。

まとめ

誰が森を見るのか、リーダーやPMが常に忙しそうにしている場合は、何に時間を使っているのか調査する必要がある。実はここがボトルネックになっていてプロジェクトの進行が思うようにいかなかったり、頻繁にリスケが発生していることも多くある。しかし、これは本人にヒアリングするだけでは表面化しないため、ユーザー側の担当者やプログラマーなどの周辺人員から浮き彫りにすることが望ましい。

関連記事

伴走型開発で仕様変更地獄を脱出

炎上の元凶

システム開発プロジェクトにおいて「仕様変更地獄」は最も深刻な問題の一つである。開発が進むにつれて次々と変更依頼が発生し、スケジュールは遅延、コストは膨張、開発チームの疲弊が進む。こうした状況に陥った企業では、プロジェクト自体が頓挫するケースも少なくない。特に従来型の開発手法では、仕様を固めてから開発に着手するため、後から変更が入ると大きな手戻りが発生する。ビジネス環境の変化が激しい現代において、この開発スタイルは限界を迎えているのだ。

仕様変更の理由

仕様変更が頻発する背景には、いくつかの構造的な問題がある。第一に、プロジェクト開始時点で業務要件を完璧に定義することは実質的に不可能だという現実である。現場の担当者も、システムが動く姿を見るまで本当に必要な機能が見えない。第二に、開発期間中にビジネス環境や競合状況が変化し、当初の要件では不十分になることがある。第三に、発注側と開発側のコミュニケーション不足により、認識のズレが後から発覚するケースである。これらの問題は、従来の「要件定義→設計→開発」という一方通行の開発プロセスでは解決できない。

伴走型開発の効果

こうした課題を解決するのが「伴走型開発支援」というアプローチである。これは、開発ベンダーが単なる請負業者ではなく、ビジネスパートナーとして顧客企業に寄り添い、プロジェクト全体を通じて継続的に支援する手法だ。具体的には、小さな単位で機能を実装しては確認するアジャイル的な開発サイクルを回し、仕様変更を前提としたプロジェクト管理を行う。重要なのは、変更を「悪」ではなく「ビジネス価値の最大化」として捉え直すことである。定期的なレビューで優先順位を見直し、本当に必要な機能に開発リソースを集中させる。こうすることで、限られた予算と期間の中で最大の成果を生み出せるのだ。

成功の3つの鍵

伴走型開発支援を成功させるには3つのポイントがある。第一に、発注側と開発側が対等なパートナーシップを築き、透明性の高いコミュニケーションを維持することである。進捗状況や課題を隠さず共有し、一緒に解決策を考える姿勢が不可欠だ。第二に、MVP(実用最小限の製品)の考え方で、コア機能から段階的に実装していくことである。すべてを一度に完璧にしようとせず、ユーザーフィードバックを得ながら改善を重ねる。第三に、変更管理のルールを明確にし、影響範囲とコストを可視化することである。無秩序な変更を防ぎながら、本当に価値のある変更は柔軟に取り入れる。このバランスこそが成功の鍵となる。

まとめ

仕様変更地獄から抜け出すには、開発手法そのものを見直す必要がある。伴走型開発支援は、変化を受け入れながらプロジェクトを着実に前進させる現代的なアプローチである。単なる技術提供ではなく、ビジネスゴールの実現に向けた戦略的パートナーシップが、これからのシステム開発には求められているのだ。

続きを見る >

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >

小規模AI導入ガイド

効果検証から始める

多くの人は、試しにAIを導入してみて、効果を見てから予算取りを行っていきたいと考えている。とりあえずツールを導入したいといった理由では、なかなか費用を使っていいとはならないだろう。このような慎重なアプローチは非常に理にかなっており、実際の効果を数値で示すことができれば、その後の本格的な導入に向けた予算確保もスムーズに進むはずだ。まずは小さく始めて、確実な成果を積み重ねることが重要になってくる。

UI重視の効果測定

AIの効果を確認してから検討することを考えたときに最初にやることは、実はUI(ユーザーインターフェース)の部分である。例えば、グラフの表示などだ。結果として何ができれば、どういった業務がどれくらい短縮されるのかを第三者が見ても確認しやすいからだ。データの可視化により、AI導入前後の変化を明確に示すことができれば、関係者全員が効果を実感できる。特に経営陣への報告時には、視覚的に分かりやすい資料があることで、プロジェクトの価値を効果的に伝えることが可能になる。

開発とAIの分離問題

UIを作るとなると、結局はシステムの開発が必要になってしまうのではないかという懸念が生まれる。あるいは、システム開発を行うことで、そもそも期待したAIの活用がなされなくなってしまったりすることもあるだろう。これは、目的をシステム開発とAIとに分けているからだ。本来であればAI活用による業務改善が目標であったにも関わらず、システム開発が主目的となってしまい、AI機能が後回しになってしまうケースも少なくない。このような本末転倒を避けるためには、プロジェクトの優先順位を明確にすることが不可欠だ。

統合的アプローチの重要性

AIはAIの会社に発注する、UIはシステム開発会社に発注するといった、区分けをしてしまうことに誤りがある。まず、やるべきことを分解するのではなく、ITに対する知見のある人に区分けから入ってもらい、技術的な判断も行いつつKPIを作っていくことが重要になる。これは市民開発と呼ばれるものに近く、自社内でローコードを使って軽く開発することを意味する。技術的な専門知識を持つ人材が全体を俯瞰し、最適な技術選択とプロジェクト設計を行うことで、効率的かつ効果的なAI導入が実現できるのだ。

まとめ

部署やグループを横断した視点を持つことがとても大切であることがわかった。ツールや部分的な技術を目的としてしまう前に適した組織体であることの確認が大切だ。AI導入を成功させるためには、技術面だけでなく組織運営の観点からも準備を整える必要がある。

続きを見る >