相場の不在

開発の相場観

相場とは、一般的に市場で競争売買によって決まる商品の価格とされているが、ことシステム開発においては、相場というものが存在しない。

比較の難しさ

比較できる同じものであれば競争原理が働き相場が構築されるが、フルスクラッチされるシステム開発においては全く同じものができることはない。しかも、出来上がるものはパッケージシステムやSaaSの利用以外は、未来にしか完成しないので当然比較もできないものとなる。

将来要件判断

比較的ないからこそ、しっかりと吟味する必要があるが、吟味する材料や条件などは現時点で明確になるものが元となる。未来に発生する追加条件や変更される環境などはジャッジする時点にはすべて出そろわないという難しさがある。

変化への対応

システム開発は未来にどのような条件変更やルール変更が行われるかわからないものであるという認識を持つことが大切である。その上で最善のジャッジを行うべきである。その判断は過去を遡って正解か間違いかを評価すべきではない。

まとめ

日本では原点方式の人事評価が行われるため、イノベーションは起こりにくい本質的な問題がある。これを無視して「DXだ」といっている組織があるとすれば、それは本質を見誤っているといえる。

関連記事

予算ブレの原因

開発の変動要因

システム開発は長期にわたることが多く、また未来の不確実性の中で予算を策定しなくてはいけないことがある。セキュリティーをはじめ動作環境の変化や人員の欠如、予期していなかった仕様の発覚などが原因だ。

目標変化と予算

進捗率は目的地が明確に設定されていれば数字を負うことで予算達成率を算出することができる。しかし、目的地が近い遠いのは無しではなく、根本的な目的地がなくなったり、複数になったりすることがシステム予算の策定の難しいところである。

計画型開発法

システムに未来を見ることができればブレない、見えないことをすべて調査の上で着手できれば確実な予算と実行が可能である。進捗率の報告が可能になる。フォーターフォールモデルなのでコストがかかることと時間がかかることの覚悟が必要だ。途中での方向修正は原則できない。

柔軟な開発手法

逆に低予算で早く導入するなら、見えにくくなるデメリットがある。状況によって対応を素早く変化させる必要があるため進捗率を算出しにくい。アジャイル開発と呼ばれるものであり、社内開発であることが理想である。途中で出てくる条件に対しても柔軟に方向性を変化させることが可能である。

まとめ

アジャイル開発で予算を立てるときは、1.5-2.5倍くらいを目安に余裕を持って設定することを推奨する。

続きを見る >

オフショア開発の変遷と現状

オフショア開発のコストダウン目的

オフショア開発における主要な目的は、プロジェクトの総コストを削減するために人件費を削減することです。日本の開発者の人件費が高いため、ベトナムの開発者と置き換えることで財務的なコストダウンを実現してきました。ただし、外国に発注するということは、品質の低さと言葉の壁という2つの問題がつねにつきまといます。

内部コストと労働者の負担

人件費の削減は財務上のコストダウン効果を直接的に実現しますが、品質の低さや言葉の壁といった問題は現場の労働時間や精神的な負担として現れる内部コストです。これらの内部コストは労働者に転嫁され、営業側が値引きを行い開発現場の労働に影響を与える仕組みとなっています。オフショア開発に対する開発現場からの評判の悪さは、このような直接的な感覚から生じていると考えられます。

品質の向上と言語の壁

品質の低さや言葉の壁は改善の兆しを見せています。20年前と比較すると、通信手段や開発ツールが進歩しました。チャットやビデオ会議、画面共有などの技術が利用できるようになりました。また、クラウドやソースコードの共有などの管理システムも進化しました。言語の壁も同様で、ベトナムにおける日本語の理解力や日本人における英語の能力は向上しています。さらに、機械翻訳の進歩により、外国語を交えながら技術的な会話が容易になりました。

品質と納期の重要性

オフショア開発において品質と納期は重要な要素です。納期を守り、仕様を満たすことが最終的な評価基準となります。優れた開発チームやツールの活用は重要ですが、納期の達成と仕様の達成が果たされなければ、プロジェクトは失敗となります。

新たなオフショア開発の戦略

オフショア開発におけるコストダウンの戦略は、技術の進歩を活用する方向に進んでいます。開発手法として、ウォーターフォール型ではなくジャイルやOSS的な手法を導入することが求められています。また、国際的な標準的なツールやバージョン管理などの利用も重要です。さらに、コミュニケーションの円滑化も不可欠です。言葉の問題だけでなく、コミュニケーションの円滑化は人間によって担保されます。

オフショア開発の変遷において、品質やコミュニケーションの改善は見られますが、人件費の差によるコストダウンは限界に近づいています。技術の進歩を取り入れた新たな戦略の導入により、より効果的なオフショア開発を実現することができるでしょう。

続きを見る >

ローコード開発とAI活用

AIとローコードの融合

ローコード開発プラットフォームの普及により、非エンジニアでもアプリケーション開発が可能になった現在、生成AIの活用が大きな注目を集めている。ChatGPTやCopilotなどのAIツールを組み合わせることで、開発スピードがさらに向上すると期待されているが、本当にすべてのローコード開発にAIが必要なのだろうか。コスト、品質、保守性など多角的な視点から、AI導入の真の価値を見極めることが、企業のDX戦略において極めて重要になっている。

コード生成の現実

生成AIによるコード生成は確かに魅力的だが、実際の品質には課題がある。AIが生成するコードは、単純な処理であれば高品質だが、複雑なビジネスロジックや例外処理が絡むと、不完全なコードが生成されることが少なくない。さらに深刻な問題は要件定義の壁である。AIは与えられたプロンプトに基づいてコードを生成するが、曖昧な要件や暗黙の前提条件を正確に理解することは困難である。結果として、開発者は生成されたコードを詳細に検証し、修正する必要があり、期待したほどの効率化が実現しないケースも多く見られる。

保守性のコスト

AIを活用したローコード開発において、最も見落とされがちなのが保守性の課題である。AI生成コードは、その時点では動作しても、後から読み解くことが困難な構造になっていることがある。変数名が不適切だったり、処理の意図が不明瞭だったりすると、半年後に修正が必要になった際、開発担当者が変わっていた場合、大きな手戻りが発生する。また、AIツールのバージョンアップや仕様変更により、過去に生成されたコードとの互換性が失われるリスクも存在する。初期開発のスピードを重視するあまり、長期的な運用コストが膨らんでしまっては本末転倒である。真のDX推進には、目先の効率化だけでなく、持続可能な開発体制の構築が不可欠なのである。

適切な見極め

ローコード開発におけるAI活用は、すべてのケースで必須というわけではない。定型的な画面開発や単純なCRUD操作など、パターン化された開発にはAIが有効だが、複雑なビジネスロジックや高度なセキュリティが要求される領域では、人間による丁寧な設計と実装が重要である。重要なのは、プロジェクトの性質、チームのスキルレベル、長期的な保守計画を考慮した上で、AIを活用すべき領域と従来手法を維持すべき領域を明確に区分することである。段階的にAIツールを導入し、効果を検証しながら適用範囲を拡大していく慎重なアプローチが、失敗リスクを最小限に抑え、真の生産性向上につながる。

まとめ

ローコード開発へのAI導入は、万能の解決策ではなく、適材適所で活用すべきツールである。コード生成の質、要件定義の難しさ、保守性の課題を十分に理解した上で、自社の開発体制に合った形でAIを取り入れることが成功の鍵となる。短期的な効率化だけでなく、長期的な運用まで見据えた戦略的な判断が求められている。

続きを見る >