相場の不在

開発の相場観

相場とは、一般的に市場で競争売買によって決まる商品の価格とされているが、ことシステム開発においては、相場というものが存在しない。

比較の難しさ

比較できる同じものであれば競争原理が働き相場が構築されるが、フルスクラッチされるシステム開発においては全く同じものができることはない。しかも、出来上がるものはパッケージシステムやSaaSの利用以外は、未来にしか完成しないので当然比較もできないものとなる。

将来要件判断

比較的ないからこそ、しっかりと吟味する必要があるが、吟味する材料や条件などは現時点で明確になるものが元となる。未来に発生する追加条件や変更される環境などはジャッジする時点にはすべて出そろわないという難しさがある。

変化への対応

システム開発は未来にどのような条件変更やルール変更が行われるかわからないものであるという認識を持つことが大切である。その上で最善のジャッジを行うべきである。その判断は過去を遡って正解か間違いかを評価すべきではない。

まとめ

日本では原点方式の人事評価が行われるため、イノベーションは起こりにくい本質的な問題がある。これを無視して「DXだ」といっている組織があるとすれば、それは本質を見誤っているといえる。

関連記事

AIで何ができるのか

AI vs 人間

AIは人間を超えるのか?などの質問をされることがよくある。シンギュラリティと呼ばれているが、超える超えないの単一線上で比較できるものではないと考える。たとえば、計算の速さだけでいうと人間よりも、はるかに早いと言える。

AI導入の両面性

とにかく労働人口の減少によって、機械化やAI化が急がれていると思う。すでに、画像作成や文章作成などは置き換わっている事例も多くみられるようになった。そんな中で、よくあるのが「AIで何かできませんか?」という問い合わせである。

AI時代のDX

DXという概念にも通ずる話だが、デジタル化するだけでは、いわゆるデジタル変革にはならない。ペーパーレス化ってやつだ。同じように、AIを使うことを目的としてしまうと業務に対して便益がない場合も多いようだ。したがって、AIを利用するということをDXと定義するのであれば、日常業務を整理して、どこをAIに任せるのかを検討することが大切である。

AI活用の極意

AIにも得手不得手があり、計算はもちろん得意だが、質問の仕方や指示の仕方で活用レベルは大きく変わる。プロンプトと呼ばれるものはコピーして使えるが、AIを活用しきろうとするならば、自分でプロンプトを考えれる必要がある。つまり、現時点では賢いAIなのではなく、使う側が上手に使わないとならない。

まとめ

AIの使いどころについて、多くは無理やり使おうとするため、AIを活用する場面でないことも多くある。また、ユーザー企業に関わらずシステム会社でもAIの活用は進んでおり、画像の生成やプログラミングの一部はすでに人間が行わなくてもよい段階にある。これから先もこれは加速することだろう。

続きを見る >

2025年AI活用トレンド

2025年のAI活用

2025年は企業におけるAI活用が実証実験から本格導入へと移行する転換期となっている。生成AI市場は急速な拡大を続けており、専門人材の不足を補うソリューションとして中堅企業にも急速に普及が進んでいる。大手企業では数百億円規模の投資計画が発表され、業務効率化だけでなく新規事業創出への期待も高まっている。本記事では、2025年に押さえておくべきAI活用の主要トレンドを解説する。

自律型AIエージェントの台頭

2025年の最大のトレンドは「AIエージェント」の台頭である。エージェント型AIは、ユーザーが設定した目標に向けて自律的に計画を立て行動する新しいAIシステムであり、従来のAIアシスタントとは異なり人間からの直接的な指示がなくても主体性を持って行動できる点が特徴である。また、画像、音声、テキストを統合的に処理するマルチモーダル技術の進化により、業務プロセスは新たな段階へと移行している。複数の情報形式を同時に分析することで、これまで見えなかった相関関係の発見が可能となり、意思決定の精度向上に貢献している。

成功と失敗の分岐点

一方で、AI導入には課題も存在する。2024年の実績から、導入効果に大きな差が生じていることも明らかになってきた。成功企業と失敗企業の分岐点として、経営層のコミットメント、段階的な展開計画、現場との密な連携が挙げられている。さらにAIの過剰な期待の時代から、AIの成果が問われる時代へと移行しており、企業は投資から明確で測定可能な価値を生み出す準備が求められている。加えて、AIガバナンスと偽情報対策の重要性も増しており、AIの責任ある活用と安全な運用が求められている。セキュリティリスクへの対応も含め、戦略的なAI導入計画の策定が不可欠となっている。

段階的導入の重要性

AI活用を成功させるためには、いきなり大規模導入を目指すのではなく、自社の課題を正確に把握した上で小規模な実証実験から始めることが推奨される。成功企業に共通するのは、経営層の強いコミットメント、段階的な展開計画、そして現場との密な連携である。特に重要なのは、AIを単なるツールとしてではなく、業務プロセス全体を見直す契機として捉えることである。現場の声を反映しながら、継続的な改善サイクルを回すことで、投資対効果を最大化できる。外部の専門家による伴走支援を受けながら、自社に最適なAI活用戦略を構築していくことが成功への近道となるであろう。

まとめ

2025年のAI活用は、AIエージェントやマルチモーダル技術の進化により大きな転換期を迎えている。しかし、成果を出すためには段階的な導入計画と現場との連携が不可欠である。ROIの実証やガバナンス体制の構築も含め、戦略的なアプローチでAI活用を推進していくことが求められている。

続きを見る >

ローコード導入判断基準

ローコード導入の必要性

近年、企業のデジタル変革(DX)において、ローコードプラットフォームの活用が急速に広がっている。従来の開発手法では時間とコストがかかりすぎ、変化の激しいビジネス環境に対応できないという課題が深刻化しているためである。特に日本企業では、IT人材不足が深刻な問題となっており、限られたリソースで最大の成果を上げる必要がある。このような背景から、ローコード開発は単なる開発手法の一つではなく、企業存続のための戦略的選択肢として注目されているのである。

導入メリット

ローコード導入により得られる最大のメリットは、開発期間の大幅な短縮である。従来のプログラミングで数ヶ月かかっていたアプリケーション開発が、数週間で完了できる事例が数多く報告されている。また、専門的なプログラミング知識を持たない業務部門の担当者でも、簡単なアプリケーションを自ら構築できるため、IT部門の負担軽減にもつながる。さらに、クラウドベースのプラットフォームが多いため、インフラ構築コストも削減でき、総所有コスト(TCO)の観点からも非常に魅力的な選択肢となっている。これらの要素が組み合わさることで、企業の競争力強化に直結する効果が期待できる。

導入判断の観点

一方で、すべてのプロジェクトにローコードが適しているわけではない。導入判断には慎重な検討が必要である。まず、プロジェクトの複雑性を評価する必要がある。単純な業務アプリケーションや社内ツールには適しているが、高度なセキュリティが求められるシステムや、大量のデータ処理を行うシステムでは従来の開発手法が望ましい場合もある。また、既存システムとの連携要件や、将来的な拡張性も重要な判断要素となる。組織の技術的成熟度や、ガバナンス体制の整備状況も考慮すべきポイントである。これらの観点を総合的に評価することで、適切な導入判断が可能になる。

成功のアプローチ

ローコード導入を成功させるには、段階的なアプローチが重要である。まずは小規模なパイロットプロジェクトから始め、組織の学習とプラットフォームの理解を深めることを推奨する。同時に、適切なガバナンス体制の構築と、セキュリティポリシーの策定も不可欠である。また、従来の開発チームとローコード開発チームの連携体制を整備し、知識の共有と技術的サポートを確保することが成功の鍵となる。さらに、継続的な教育プログラムの実施により、組織全体の技術力向上を図ることで、長期的な成功を実現できる。これらの取り組みにより、DXの目標達成により近づくことができるだろう。

まとめ

DXプロジェクトにおけるローコード導入は、適切な判断基準と実践的なアプローチにより大きな成果をもたらす。開発スピード、コスト効率、技術者不足への対応という観点から、多くの企業にとって有効な選択肢となっている。成功の鍵は段階的導入と適切なガバナンス体制の構築にある。

続きを見る >