相場の不在

開発の相場観

相場とは、一般的に市場で競争売買によって決まる商品の価格とされているが、ことシステム開発においては、相場というものが存在しない。

比較の難しさ

比較できる同じものであれば競争原理が働き相場が構築されるが、フルスクラッチされるシステム開発においては全く同じものができることはない。しかも、出来上がるものはパッケージシステムやSaaSの利用以外は、未来にしか完成しないので当然比較もできないものとなる。

将来要件判断

比較的ないからこそ、しっかりと吟味する必要があるが、吟味する材料や条件などは現時点で明確になるものが元となる。未来に発生する追加条件や変更される環境などはジャッジする時点にはすべて出そろわないという難しさがある。

変化への対応

システム開発は未来にどのような条件変更やルール変更が行われるかわからないものであるという認識を持つことが大切である。その上で最善のジャッジを行うべきである。その判断は過去を遡って正解か間違いかを評価すべきではない。

まとめ

日本では原点方式の人事評価が行われるため、イノベーションは起こりにくい本質的な問題がある。これを無視して「DXだ」といっている組織があるとすれば、それは本質を見誤っているといえる。

関連記事

製造業DX – IoT×ローコード活用法

IoT導入の新時代

製造業の現場では、人手不足や品質管理の課題が深刻化しているが、IoTとローコード技術の組み合わせが解決策として注目されている。従来のシステム開発には高額な費用と長期間を要していたが、ローコードプラットフォームを活用することで、現場の作業者でも直感的にIoTシステムを構築できるようになった。センサーからのデータ収集、機械の稼働状況監視、品質データの自動記録など、これまで手作業で行っていた業務を効率化できる。

ローコード開発の威力

ローコード開発プラットフォームは、プログラミング知識がなくても視覚的な操作でアプリケーションを作成できる革新的な技術である。製造現場の作業者が自分たちのニーズに合わせてリアルタイムでシステムをカスタマイズでき、IT部門への依存を大幅に減らせる。温度センサー、振動センサー、カメラなどのIoTデバイスと連携させることで、設備の予知保全や作業効率の向上を実現できる。従来の開発期間を3分の1に短縮し、コストも大幅に削減できるため、中小企業でも導入しやすくなっている。

成功事例と導入効果

実際の導入事例を見ると、ある自動車部品メーカーでは設備稼働率が15%向上し、品質不良率を30%削減できた。IoTセンサーで機械の振動や温度を常時監視し、異常を検知すると自動でアラートを発信するシステムを構築したのである。また、食品製造業では温度・湿度管理の自動化により、品質検査時間を50%短縮し、人的ミスによる製品廃棄を90%削減した。これらの成果は、現場作業者がローコードツールを使って自ら問題解決に取り組んだ結果であり、外部ベンダーに依存しない持続可能なDX推進を実現している。

未来の製造業像

IoT×ローコード技術は単なるデジタル化を超えて、製造業の競争力を根本的に変革する力を持っている。現場の知見を活かしたシステム構築により、真に使えるDXソリューションが生まれ、継続的な改善サイクルが確立される。今後はAI技術との融合により、さらに高度な予測分析や自動最適化が可能になるだろう。重要なのは小さく始めて段階的に拡張していくアプローチである。まずは一つの工程から始めて成功体験を積み重ね、徐々に全社規模へ展開していくことで、確実にDX効果を実感できる。変化に対応できる柔軟な組織作りこそが成功の鍵となる。

まとめ

IoT×ローコード技術は、製造業DXの民主化を実現する画期的なソリューションである。プログラミング不要で現場主導のシステム構築が可能になり、短期間・低コストでの導入を実現できる。成功事例が示すように、設備稼働率向上、品質改善、作業効率化など具体的な成果が期待できる。重要なのは小さく始めて段階的に拡張するアプローチであり、現場の知見を活かした持続可能なDX推進が可能になる。

続きを見る >

ベトナムオフショア開発に向く3つのプロジェクトと、向かない3つのプロジェクト

ベトナムに向くプロジェクトの特徴

ベトナムへのソフトウェアのオフショア開発については昔から肯定的な意見と否定的な意見があります。昨今のベトナムの人件費の向上と日本の人件費の低下、そして円安もあり、コストダウン効果が見込めなくなってきています。しかし、単に海外オフショア開発が良いか悪いかという単純な問題ではなく、ベトナムの特徴を踏まえて、どのようなプロジェクトが向いているのか見極めることが重要です。本記事では、ベトナムにおけるオフショア開発に向く3つのプロジェクトと、向かない3つのプロジェクトを紹介します。

ベトナムに向くプロジェクト

1. 生産拠点や流通拠点を持つERPシステム開発

日本企業がベトナムに自社の生産拠点や流通拠点を持ちそのためのERPシステムを開発する場合、ベトナムは適した場所と言えます。ベトナム企業はベトナムの市場に精通しており、日本企業もベトナムの物流や製造現場に慣れています。また、ERPシステムの構築経験も蓄積されており、ベトナムのソフトウェア業界は成熟しています。さらに、ベトナム人の日本語通訳者の能力も向上しており、生産や流通に関わる日本語も習得しています。このような環境下でのERPシステム開発は、効率的かつ円滑に進めることができます。

2. ライトなWeb開発など経験を必要としない開発分野

技術の進化が激しいWeb開発など、比較的ライトで長年の経験を必要としない開発分野においても、ベトナムは適した場所と言えます。これらの分野では、若くて習得の早い技術者が求められます。ベトナムの技術者は熱意を持ち、新しい技術の習得に積極的です。また、技術自体も日本やベトナムといった特定の地域に依存せず、汎用性の高いものが多いため、ベトナムの技術者との協力により効果的な開発が行えます。

3. BPO的なプロジェクトでの教師モデル開発や画像タギングなど

ベトナムはAIにおける教師モデルの開発や画像のタギングなどのBPO的なプロジェクトにも適しています。ベトナムの基礎教育レベルは高く、労働者の字の読み書きやPCの使用能力に問題はありません。また、ベトナムはピラミッド型組織を構築しやすい文化的環境が整っているので大量生産に向いています。これらの要素を活かして、BPO的なプロジェクトをベトナムで展開することは効果的です。

ベトナムに向かないプロジェクト

1. コストダウンが目的のインクルーシブなプロジェクト

単純なコストダウンが目的のインクルーシブなプロジェクトは、ベトナムにとって戦略的な選択肢とは言えません。最初は若くて安いエンジニアを投入することで一時的なコストダウン効果を得るかもしれませんが、時間が経つにつれて人件費が上昇し、コストが増加してしまいます。また、ベトナムのエンジニアも自身のキャリアパスを考えるため、離職率が高く、人材の取り替えが困難になる場合もあります。

2. AIなど最先端技術のラボラトリーとしてのプロジェクト

ベトナムはAIなどの最先端技術のラボラトリーには向いていません。ベトナムは積極的な技術開発を行っていますが、他の国々も同様に積極的であり、特にアドバンテージがあるわけではありません。また、最先端技術になるほど人件費が高くなり、ベトナム価格でも他の国と競争することが難しい場合があります。このような背景から、ベトナムにおける最先端技術の開発には慎重な判断が求められます。

3. 最終消費者向けのセールスやマーケティングシステム

最終消費者向けのセールスやマーケティングシステムは、ベトナムとの文化や商習慣、法律、税制などの違いにより、開発が困難となる場合があります。ベトナム側で日本のマーケットに適したシステムを開発することは難しく、逆に日本側でもベトナム市場に合わせたシステムを構築することは容易ではありません。ただし、バックエンドのシステムに関しては国による違いは少ないため、ERPのようなバックエンドのシステム開発はベトナムでも適しています。

以上がベトナムにおけるオフショア開発に向くプロジェクトと向かないプロジェクトの一例です。プロジェクト選定においては、ベトナムの特徴や環境を的確に把握し、ベターな組み合わせを選ぶことが成功への重要な戦略となります。

続きを見る >

2026年DX計画の立て方

なぜ今なのか

2026年は企業のDX推進において大きな転換点となる年だ。政府のデジタル・AI補助金制度が本格始動し、単なるITツール導入ではなく、業務そのものを効率化する仕組みづくりが求められている。AI、IoT、ローコードといったテクノロジーは個別に活用するのではなく、統合的な戦略のもとで導入することで初めて真の効果を発揮する。2025年の今こそ、来年に向けた具体的な計画策定を開始すべきタイミングである。

三技術の役割

DX計画を成功させるには、まず各技術の役割を正しく理解することが重要だ。AIはデータを分析し判断・予測を行うソフトウェアであり、IoTはセンサーを通じてデータを収集するハードウェアの仕組みである。この二つは補完関係にあり、IoTが集めたデータをAIが分析することで、異常検知や需要予測といった高度な自動化が実現する。一方、ローコードはプログラミング知識が少なくてもアプリケーションを構築できる開発手法で、IT人材不足を解消する手段として注目されている。生成AIとの連携により、開発スピードは従来の数倍にまで向上している。

統合戦略の要点

三つの技術を統合した戦略を設計する際には、いくつかの重要なステップがある。第一に、自社のAI成熟度を客観的に評価することだ。戦略、人材、データ、ガバナンス、運用、文化の六つの軸で現状を診断し、業界平均と比較しながら目標を設定する。第二に、大規模導入ではなく「まず一業務」から改善を始めることである。請求書処理や在庫管理など、効果を数字で示しやすい領域を選定し、小さな成功体験を積み重ねる姿勢が重要となる。第三に、現場が使い続けられる仕組みを重視することだ。高機能なツールを導入しても、現場に定着しなければ意味がない。

実行手順

2026年のDX計画を実行するための具体的な手順を整理する。まず今月から着手すべきは、AI成熟度診断の実施と、ROI最大化が見込める業務領域の特定だ。ノーコード・ローコードツールを活用した最小機能でのPoC(概念実証)を開始し、四半期ごとにAI推進委員会でレビューを行う体制を構築する。補助金申請を見据え、AIやDXが業務のどこに組み込まれるかを可視化した資料を準備することも欠かせない。課題とAIのつながりを明確に説明できれば、審査において大きなアドバンテージとなる。経営層が先頭に立ち、全社一丸となって取り組む姿勢を示すことが成功への鍵である。

まとめ

2026年のDX計画では、AI・IoT・ローコードを個別ではなく統合的に活用する戦略設計が求められる。成熟度診断で現状を把握し、小さな成功を積み重ねながら段階的に拡大していくアプローチが効果的だ。補助金活用も視野に入れ、今から計画策定を開始することが重要である。

続きを見る >