相場の不在

開発の相場観

相場とは、一般的に市場で競争売買によって決まる商品の価格とされているが、ことシステム開発においては、相場というものが存在しない。

比較の難しさ

比較できる同じものであれば競争原理が働き相場が構築されるが、フルスクラッチされるシステム開発においては全く同じものができることはない。しかも、出来上がるものはパッケージシステムやSaaSの利用以外は、未来にしか完成しないので当然比較もできないものとなる。

将来要件判断

比較的ないからこそ、しっかりと吟味する必要があるが、吟味する材料や条件などは現時点で明確になるものが元となる。未来に発生する追加条件や変更される環境などはジャッジする時点にはすべて出そろわないという難しさがある。

変化への対応

システム開発は未来にどのような条件変更やルール変更が行われるかわからないものであるという認識を持つことが大切である。その上で最善のジャッジを行うべきである。その判断は過去を遡って正解か間違いかを評価すべきではない。

まとめ

日本では原点方式の人事評価が行われるため、イノベーションは起こりにくい本質的な問題がある。これを無視して「DXだ」といっている組織があるとすれば、それは本質を見誤っているといえる。

関連記事

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >

日本の技術人材不足とオフショア開発

セクション1: 日本のソフトウェア開発人材不足の背景

日本のソフトウェア開発業界は50年以上の歴史を持ち、多くの経験豊富なエンジニアが存在します。しかし、現在の日本では開発人材の不足が深刻な問題となっています。この人材不足は、企業が即戦力となるエンジニアを安価で求めるという要望に由来しています。そのため、日本の人材不足はしばしば「即戦力を安く求める欲求」として揶揄されることもありますが、この言い方には一面の真実も含まれています。企業が効率的な開発を行うためには、即戦力のエンジニアが必要なのは当然のことです。

また、この人材不足の問題は、単に日本だけに限ったものではありません。他の海外でも同様の人材不足が起きています。したがって、オフショア開発を検討する際には、都合の良い人材を海外で見つけることができるという考え方は一部正解であり、一部誤解とも言えます。

セクション2: 日本とベトナムのエンジニアの特徴

日本のエンジニアは、特にWeb関連のエンジニアにおいては、1990年代からのキャリアを持つベテランが多く存在します。そのため、文字コードやバイナリ、組み込み技術など、古いOSや低レベルの知識を必要とする開発においては、日本の技術者は強みを持っています。一方、新しいフレームワークや概念の習得には、国民性よりも年齢が影響を与える傾向があります。そのため、ベトナムのエンジニアは若さを活かして新しい技術を素早く学ぶことが得意と言えます。

また、コンピューター業界においては、上流と下流、低レベルと高レベルといった言葉が中立的に使われますが、この意味において日本は低レベル開発に向いており、ベトナムは高レベル開発に向いていると言えます。そのため、バランスの取れたオフショア開発を行うためには、日本のエンジニアのジェネラリスト的な能力とベトナムのエンジニアのスペシャリスト的な能力を組み合わせることが重要です。

セクション3: 日本とベトナムの開発手法の違い

日本のソフトウェア開発では、納期を守るためにウォーターフォール型の開発手法が主流です。アジャイル開発が概念的には取り入れられつつありますが、完全にアジャイルな開発プロセスを採用しているケースはまだまれです。一方、ベトナムのソフトウェア開発は、日本の開発手法と大きく異なるわけではありません。基本的には納期を守るためのウォーターフォール型の手法が一般的ですが、OSSの影響を受けて開発手法が変化しつつあります。

日本の開発現場と比較して、ベトナムの開発手法の利点は、新しいフレームワークや技術の習得において素早い反応性を持つことです。ベトナムのエンジニアは若く、学習意欲が高いため、最新の技術に対する理解が早く、柔軟に対応できるという特徴があります。ただし、ベトナムの開発現場においては、アジャイル開発の完全な導入はまだ一般的ではないことに注意が必要です。

セクション4: 言語の壁以外の考慮すべきポイント

ベトナムのエンジニアを活用する際に言語の壁を乗り越えるためには、円滑なコミュニケーションを図ることが重要です。英語がビジネスコミュニケーションの共通語となっているため、日本の企業がベトナムのエンジニアとのコミュニケーションを円滑に行うためには、英語教育の強化や翻訳ツールの活用などが有効です。また、文化やコミュニケーションスタイルの違いも考慮すべきポイントです。異なる文化背景を持つエンジニア同士が協力する場合、相手の文化に対する理解や尊重が求められます。

セクション5: 成功へのカギはバランスと柔軟性

ベトナムでのソフトウェア開発のオフショアを成功させるためには、日本とベトナムのエンジニアの特長を組み合わせることが重要です。日本のエンジニアはジェネラリストとして幅広い知識と経験を持っており、プロジェクト全体の管理や技術的な統括を担当することが得意です。一方、ベトナムのエンジニアはスペシャリストとして特定の技術に精通しており、新しい技術の習得にも素早く対応できます。

オフショア開発においては、開発現場のバランスと柔軟性が求められます。例えば、日本のエンジニアがジェネラリストとしてプロジェクトを牽引し、ベトナムのエンジニアがスペシャリストとして特定の技術領域を担当する役割分担が効果的です。また、現代的な開発手法を用いることも重要です。ウォーターフォール型の手法に加えてアジャイル開発の一部を取り入れるなど、柔軟に適切な手法を選択することが目的達成(コストダウン実現)へのカギとなります。

続きを見る >

業務可視化によるDX推進

真の業務改善への道筋

いきなり顕在化しているアナログをデジタル化するだけでは業務改善とは言えない。真の業務改善を実現するためには、表面的な問題解決ではなく、根本的な業務の見直しが必要である。業務を可視化して正しい業務分析を行うためには、ある程度のステップを踏む必要がある。単純なデジタル化は一時的な効率化にとどまり、長期的な競争力向上には繋がらない。

目的とゴール設定

まず、目的とゴールを明確にする必要がある。なぜ業務分析をするのか、何を達成したいのかを明文化することが重要である。例えば、「手戻りを3割減らす」「問い合わせ対応時間を半分にする」「余剰コストを1千万円削減する」などの具体的な数値目標を設定する。曖昧な目標設定では、後の分析や改善施策の効果測定が困難になってしまう。定量的で測定可能な目標を立てることで、分析の方向性が明確になり、成果を客観的に評価できるようになる。

業務の可視化技法

現在の作業タスクのすべてをまずは網羅的に洗い出して、分類を行う。複数担当者で付箋にタスクを書き出し、重要度マトリクスや緊急度マトリクスで整理する方法が非常に有効である。また、必ず用意しておきたいのが、業務フロー図と業務の分担表である。誰が、いつ、どこで、何をしているかを図式化することで、無駄や重複、ボトルネックが浮き彫りになる。このプロセスにより、今まで見えなかった非効率な作業や不要なプロセスを発見できるのである。

根本原因の探求

課題の本質がまとまったら、重要な事項と緊急の事項などを切り分けて、本質的ではない事項は思い切って削除や軽減を検討する。また、抽出した課題は小さな原因に分解していき、根本原因を探る(要因分析)。リソースが限られる場合には、ABC分析(例えば顧客ランク別)で、重要顧客に注力できるよう業務配分や訪問頻度などを見直す。定量データや日報などのログ、クレームデータの活用も効果的である。AIで課題を解決するより前に、膨大な過去データをAIに処理させるのも良いだろう。

まとめ

定量化・定性化できれば、効果検証につなげる改善策と実行計画を策定する。正しい業務分析とは、単なるデジタル化ではなく明確な目的に基づいて、ボトルネックを可視化し、データと構造化された分析を行うことなのである。継続的な改善こそが真のDXを実現する。

続きを見る >