相場の不在

開発の相場観

相場とは、一般的に市場で競争売買によって決まる商品の価格とされているが、ことシステム開発においては、相場というものが存在しない。

比較の難しさ

比較できる同じものであれば競争原理が働き相場が構築されるが、フルスクラッチされるシステム開発においては全く同じものができることはない。しかも、出来上がるものはパッケージシステムやSaaSの利用以外は、未来にしか完成しないので当然比較もできないものとなる。

将来要件判断

比較的ないからこそ、しっかりと吟味する必要があるが、吟味する材料や条件などは現時点で明確になるものが元となる。未来に発生する追加条件や変更される環境などはジャッジする時点にはすべて出そろわないという難しさがある。

変化への対応

システム開発は未来にどのような条件変更やルール変更が行われるかわからないものであるという認識を持つことが大切である。その上で最善のジャッジを行うべきである。その判断は過去を遡って正解か間違いかを評価すべきではない。

まとめ

日本では原点方式の人事評価が行われるため、イノベーションは起こりにくい本質的な問題がある。これを無視して「DXだ」といっている組織があるとすれば、それは本質を見誤っているといえる。

関連記事

なぜベトナムは比較的ライトウェイトなWeb開発に向いているか

導入

Web開発は様々な分野が存在しますが、ベトナムは比較的ライトウェイトなWeb開発に適していると言えます。本記事では、Web開発のいくつかのカテゴリについて検討し、ベトナムでのオフショア開発の適性について評価します。

カテゴリ1: 古典的なホームページ開発

古典的なホームページ開発について考えます。現在でも、完全なスクラッチでのホームページ開発が行われることもありますが、一般的にはWordPressなどのフレームワークが使用されることが多いです。このカテゴリについては、利点と欠点がありますが、ベトナムがオフショアに向いているかどうかは、まずは中立的な評価となります。

まず欠点から述べると、デザイン要素が大きいために海外での開発には向いていないと言えます。企業のウェブサイトや商品紹介ページ、ランディングページなどは、マーケティングの観点からデザイン要素が重要です。これらはウェブ開発やHTMLの問題ではなく、デザインの問題であり、プロジェクトの規模的に技術的な開発とデザインの分野が結合していることも多いです。このようなプロジェクトを海外にアウトソースすることは適切ではありません。ベトナムであろうと他の国であろうと、同様の理由が当てはまります。また、ベトナムの開発会社が日本語に堪能であっても、最も難しい分野を外国人に依頼していることを考えるべきです。

一方で、利点について考えましょう。デザインとウェブ開発の分業体制が進んでおり、古典的なホームページ開発の事例は少なくなってきています。従って、ある程度の分業体制が整っている場合は、一部をベトナムにアウトソースすることは合理的です。具体的には、デザイン部分を日本国内で行い、コーディングのみをベトナムで行う方法が考えられます。また、WordPressの記事やショッピングのCMSにおける商品加工など、既にデザインがテンプレート化されている場合もあります。Webは様々な使い方ができるため、適切な開発方法を選ぶためには、日本国内でキャリアのある人材を選択することが重要です。しかし、開発のシステム化を進める企業にとっては、一部の工程をアウトソースすることは有益です。

カテゴリ2: アプリケーションのウェブインターフェース

次に、アプリケーションのウェブインターフェースについて考えます。システムの本質的な価値はデータベースにありますが、検索や編集、書き込みなどにウェブ技術が使用されることは一般的です。また、これはスマートフォンアプリの開発にも大きく関連しています。特にビジネス用途のスマートフォンアプリは、実際にはサーバーやデータベースへのウェブインターフェースに過ぎないことが多いです。

このような開発においては、ベトナムが向いています。デザイン要素や言葉の使い方についてあまり心配する必要がなく、英語で開発しても大きな影響はありません。正確な判断基準を明確に整理できることが、現実的には最も簡単です。過去には、ウェブをシステムのインターフェースとして使用する方法には多くのノウハウが必要でした。例えば、JavaScriptを使ってカレンダーをポップアップさせたり、メールの文字化けに対処するための独自のルールが存在しました。しかし、Bootstrapなどのライブラリ化により、これらの問題は解決されました。そのため、ベトナムのエンジニアの若さや素早さを活かして、新しい技術を学びながら開発を進めることが可能です。

ただし、このような開発には継続性がないという問題もあります。長期間にわたって使用されるシステムではありますが、このような仕事には継続性が求められません。したがって、最適な解決策が存在しない場合でも、状況に合わせて適切な方法を見つける必要があります。

結論

ベトナムは比較的ライトウェイトなWeb開発に向いていると言えます。古典的なホームページ開発においてはデザイン要素が重要であり、海外にアウトソースすることは適切ではありません。しかしその開発工程において分業化や標準化がすでになされている場合は、オフショア開発を検討することは有益でしょう。また、ビジネス用途のアプリケーションのウェブインターフェースにおいては、ベトナムのエンジニアが若さと素早さを活かして開発を進めることができます。
これらの開発においては、WordPressやBootstrapなどのツールやフレームワークを活用することで効率的な開発が可能です。企業のシステム開発においては、オフショア開発の一部を活用することで生産性を向上させることができるでしょう。

続きを見る >

ローコード開発≠安い

誤解されるコスト削減

実はローコード・ノーコードツールを使えば、開発が必要なくなるので安くなるというのは正しくない。たしかに、ノーコードツールを社内メンバーでCMSを使ってソフトを作るという場面は開発費用はかからない。

CMSとはコンテンツ・マネジメント・システムの略で、たとえばWebサイトのコンテンツを構成するテキストや画像、デザインなどを非エンジニアがプログラミングをせずに作成や管理できる仕組みのことである。ローコードツールはそれに加えて少しのプログラミング知識でシステムやツールを作成できることである。

開発手法の選択基準

断じてローコード開発だからといって安いわけではない。開発手法の特性による得手不得手を上手に使い分けるからトータルとして価格が安くなるということである。非エンジニア営業の金額調整という意味での判断でローコード開発を選択する場合は失敗することがある。

システム導入の本質理解

ローコード開発でも、システム導入の目的や条件が本質的にわかっていなければ、仕様要件のブレによって結果としてトータルが安くなることはない。これはローコード開発ということが問題なのではなく、フルスクラッチ開発であっても、SaaSと利用する場合であっても同じことが言える。

負債の危険

本来ローコード開発が適さない場合にも関わらず無理やりに合わせることで、プログラム部分の複雑性が増し、技術的負債となって大きな問題になっていく。結果として安くはならず、ローコード開発のメリットであるメンテナンス性までも損なうため、トータルで考えると高くなる。

まとめ

お客様の予算内で考えないといけないので、といった口癖があれば注意が必要である。クライアントの言いなり状態であれば、無理な要求は開発における仕様だけではないだろう。金額を含めた総合的な判断ができる人が、結果としてローコード開発を選択するわけである。

続きを見る >

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >