相場の不在

開発の相場観

相場とは、一般的に市場で競争売買によって決まる商品の価格とされているが、ことシステム開発においては、相場というものが存在しない。

比較の難しさ

比較できる同じものであれば競争原理が働き相場が構築されるが、フルスクラッチされるシステム開発においては全く同じものができることはない。しかも、出来上がるものはパッケージシステムやSaaSの利用以外は、未来にしか完成しないので当然比較もできないものとなる。

将来要件判断

比較的ないからこそ、しっかりと吟味する必要があるが、吟味する材料や条件などは現時点で明確になるものが元となる。未来に発生する追加条件や変更される環境などはジャッジする時点にはすべて出そろわないという難しさがある。

変化への対応

システム開発は未来にどのような条件変更やルール変更が行われるかわからないものであるという認識を持つことが大切である。その上で最善のジャッジを行うべきである。その判断は過去を遡って正解か間違いかを評価すべきではない。

まとめ

日本では原点方式の人事評価が行われるため、イノベーションは起こりにくい本質的な問題がある。これを無視して「DXだ」といっている組織があるとすれば、それは本質を見誤っているといえる。

関連記事

QCDの死角

失敗の正体

システムの失敗は見えないことがある。ブラックボックスであるがゆえに隠せてしまうからである。失敗かどうかの線引きができないところがシステム構築プロジェクトの難しいところである。

エンジニアの真実

もしかしたら、エンジニアが都合の悪いことは隠していることがあるかもしれない。しかし、決めつけてしまうとエンジニアはへそを曲げてしまう可能性がある。隠しているつもりはなくても隠れていることもある。

成功の境界

失敗の線引きは、納期が遅れることであろうか。バグが多いということであろうか。実は、状況によって一概に言えないのである。QCDという言葉があるが、品質と費用と納期のバランスを上手にとったとしても成功か失敗か、すぐにはわからないのがシステムという無形物である。

コスパの本質

コスパという言葉があるが、かけるコストに対して、どれだけのパフォーマンスが出せるかが問題となる。システム開発では、コストからやりたいことを計算するのではなく、やりたいことを明確にしたうえで、コスト内でリッチ度合いを調節することが重要である。

まとめ

システム開発においては、失敗が見えにくいため、失敗しないように見えるのかもしれない。失敗しないことは、成功であるということでもない。時間が経つにつれて失敗を感じることもあり得るのである。

続きを見る >

内製化の成功術

IT報酬の実態

海外と比べて日本のITエンジニアの報酬が低いという記事をよく目にする。それもそのはずで、ハイクラスIT人材は都合のいい「何でも屋」にはならないからである。

導入時の誤解

ユーザー企業やシステムのユーザーは、IT化を行うことで業務が減るという先入観を持っていることがある。システム導入を着手したときの目的を忘れて、その時、その場の課題を優先して都合よくITエンジニアを動かしてしまう。また動くITエンジニアもそこにいたりする。

システムと医療

たとえば、「お腹が痛い」と病院にいって「すぐに切開しよう」とはならないはずだ。このようにシステムにもその他にも色々な条件が絡まり合っている。システムは取り扱う情報量や関連する業務が多く導入に時間がかかる。時間がかかる結果、最初の導入目的を忘れてしまうのである。

真のIT人材価値

ハイクラスIT人材はユーザー側の状況と心理を配慮しつつ、現場のプログラマーの状況と心理を考慮して陣頭指揮できる人材といってもよいだろう。心理というのは物の言い方だけではなく、無形の財産を構築したり業務にフィットさせたりするので、プロジェクトの円滑さが変わるのだ。

まとめ

小手先だけでシステムに関するプロジェクトを推進しようとすると、「言われた通りにやった」という受動的な参加者が増えてしまう。情シスのSIer化を回避するにはITエンジニアを「何でも屋」にさせて疲弊させないことも大切である。開発チームの雰囲気作りも非常に効果がある。

続きを見る >

2025年AI活用トレンド

2025年のAI活用

2025年は企業におけるAI活用が実証実験から本格導入へと移行する転換期となっている。生成AI市場は急速な拡大を続けており、専門人材の不足を補うソリューションとして中堅企業にも急速に普及が進んでいる。大手企業では数百億円規模の投資計画が発表され、業務効率化だけでなく新規事業創出への期待も高まっている。本記事では、2025年に押さえておくべきAI活用の主要トレンドを解説する。

自律型AIエージェントの台頭

2025年の最大のトレンドは「AIエージェント」の台頭である。エージェント型AIは、ユーザーが設定した目標に向けて自律的に計画を立て行動する新しいAIシステムであり、従来のAIアシスタントとは異なり人間からの直接的な指示がなくても主体性を持って行動できる点が特徴である。また、画像、音声、テキストを統合的に処理するマルチモーダル技術の進化により、業務プロセスは新たな段階へと移行している。複数の情報形式を同時に分析することで、これまで見えなかった相関関係の発見が可能となり、意思決定の精度向上に貢献している。

成功と失敗の分岐点

一方で、AI導入には課題も存在する。2024年の実績から、導入効果に大きな差が生じていることも明らかになってきた。成功企業と失敗企業の分岐点として、経営層のコミットメント、段階的な展開計画、現場との密な連携が挙げられている。さらにAIの過剰な期待の時代から、AIの成果が問われる時代へと移行しており、企業は投資から明確で測定可能な価値を生み出す準備が求められている。加えて、AIガバナンスと偽情報対策の重要性も増しており、AIの責任ある活用と安全な運用が求められている。セキュリティリスクへの対応も含め、戦略的なAI導入計画の策定が不可欠となっている。

段階的導入の重要性

AI活用を成功させるためには、いきなり大規模導入を目指すのではなく、自社の課題を正確に把握した上で小規模な実証実験から始めることが推奨される。成功企業に共通するのは、経営層の強いコミットメント、段階的な展開計画、そして現場との密な連携である。特に重要なのは、AIを単なるツールとしてではなく、業務プロセス全体を見直す契機として捉えることである。現場の声を反映しながら、継続的な改善サイクルを回すことで、投資対効果を最大化できる。外部の専門家による伴走支援を受けながら、自社に最適なAI活用戦略を構築していくことが成功への近道となるであろう。

まとめ

2025年のAI活用は、AIエージェントやマルチモーダル技術の進化により大きな転換期を迎えている。しかし、成果を出すためには段階的な導入計画と現場との連携が不可欠である。ROIの実証やガバナンス体制の構築も含め、戦略的なアプローチでAI活用を推進していくことが求められている。

続きを見る >