運用の昇華

開発現場の想定外

基幹システムの開発現場では、最初に想定した仕様とは異なる業務フローが後から発覚することが多い。

マネジメントの試金石

後から発覚した業務フローは、すでに構築が進んでいるシステムに組み込むことが難しいため、どのように対応するかがプロジェクトマネージャーの腕の見せ所である。

プロジェクトの舵取り

プロジェクトマネージャーとは何かと問われたときに、一言で言い表すならば、不測の事態にどのように対応できるか、ということではないかと考える。プロジェクトが何の問題もなく、完遂できることは少ない。したがって、イレギュラーケースが発生した時にどのような手立てを打てるか、迅速に行動できるかがプロジェクトマネージャーのレベルとなる。

パートナーシップの重要性

プロジェクトマネージャーがシステムの完成しか考えていなければ、途中から発覚した仕様は「運用でカバーせよ」とユーザー側に責任を押し付けてしまうことがある。しかし、より良いシステムを目指す、パートナーとしてであればこの回答は好ましくない。

まとめ

どのような事象がきっかけで、途中で使用漏れが発覚したのか、プロジェクトの進行状況を見ながら、ひも解くことが重要である。運用でカバーというユーザー側だけにだけ負担をさせるのではなく、運用をカバーするようなシステムを構築できるのが理想である。

関連記事

AIで変わるシステム開発

開発現場の変化

近年、システム開発の現場では深刻な人材不足と納期の短縮化が大きな課題となっている。従来の手法では限界を感じている企業も多いのではないだろうか。そんな中、AI技術の急速な進化により、開発工程に革新的な変化が起きている。コード生成からテスト自動化まで、AIが開発者をサポートする時代が到来した。本記事では、AI活用によってシステム開発がどのように変わるのか、その未来像を探っていく。

日々の開発業務

実際の開発現場では、AIはどのように活用されているのだろうか。要件定義フェーズでは、AIが過去のプロジェクトデータを分析し、最適な機能提案や工数見積もりをサポートする。コーディング段階では、GitHub CopilotやChatGPTなどのAIツールが、リアルタイムでコード補完や不具合検出を行い、開発速度を大幅に向上させている。テスト工程においても、AIが自動的にテストケースを生成し、バグの早期発見を実現する。これらの活用により、開発期間の30%削減や品質向上を達成した企業も増えている。

導入の注意点

しかし、AIの導入には注意すべき点もある。最も大きな課題は、生成されたコードの品質管理である。AIは便利だが、時として不正確なコードや非効率な実装を提案することがある。そのため、開発者にはAI出力を適切に評価できるスキルが求められる。また、セキュリティ面での懸念も無視できない。機密情報を含むコードをAIに学習させることのリスクや、著作権の問題など、法的な側面も考慮が必要である。さらに、既存の開発プロセスとAIツールをどう統合するか、組織全体での運用ルール策定も重要な課題となっている。成功の鍵は、適切なガイドライン設定と継続的な教育にある。

求められるスキル

AI活用が進む中で、開発者の役割も大きく変化している。単純なコーディング作業はAIに任せ、開発者はより創造的で高度な判断を要する業務に集中できるようになる。つまり、システム全体のアーキテクチャ設計、ビジネス要件の深い理解、そしてAIが生成した成果物を評価・改善する能力が重要になるのである。AIは強力なツールだが、あくまで人間の判断を補助するものである。技術トレンドを常に学び、AIとの協働方法を模索し続ける姿勢が、これからの開発者には不可欠である。AI時代だからこそ、人間ならではの創造性と批判的思考力が、より一層価値を持つようになるだろう。

まとめ

AI技術の進化により、システム開発は新たな段階に入った。開発速度の向上や品質改善といった明確なメリットがある一方で、適切な導入戦略と運用ルールが成功の鍵となる。重要なのは、AIを単なる自動化ツールとして捉えるのではなく、人間の能力を拡張するパートナーとして活用することである。技術と人材の両面からバランスよく取り組むことで、開発工程の真の革新が実現できるだろう。

続きを見る >

ローコードで失敗する企業

導入の落とし穴

ローコード開発は、プログラミング知識がなくても業務アプリを構築できる手法として注目を集めている。しかし、導入企業の多くが期待した成果を得られず、プロジェクトが頓挫するケースが後を絶たない。「簡単に作れる」という触れ込みを鵜呑みにし、適切な計画なく導入を進めた結果、かえって業務効率が低下する事態も発生している。失敗の原因は、ローコードの特性を正しく理解していないことにある。

活きる業務

ローコードが真価を発揮するのは、定型的な業務プロセスの自動化や、シンプルなデータ管理アプリの構築である。例えば、申請承認ワークフロー、在庫管理、顧客情報の一元管理といった業務では、短期間で実用的なシステムを構築できる。また、現場部門が主体となって改善を繰り返す必要がある業務にも適している。成功企業に共通するのは、最初から大規模なシステムを目指さず、小さな業務改善から着手している点である。スモールスタートで効果を検証し、段階的に適用範囲を広げることで、確実に成果を積み上げている。

業務選定の失敗

一方で、ローコードには明確な限界がある。複雑なビジネスロジックを含む基幹システム、大量データのリアルタイム処理、高度なセキュリティ要件が求められるシステムには不向きである。失敗企業の典型的なパターンは、これらの領域にローコードを適用しようとするケースである。開発途中で機能の限界に直面し、結局フルスクラッチでの再開発を余儀なくされることも少なくない。また、ベンダーロックインのリスクも見過ごせない。特定のプラットフォームに依存することで、将来的な拡張性や他システムとの連携に支障をきたす事例が増えている。業務特性を見極めずに導入を急ぐことが、失敗の最大の要因である。

選定フレームワーク

ローコード導入を成功させるには、業務の棚卸しと適性判断が不可欠である。まず、対象業務の複雑性、データ量、連携要件を可視化し、ローコードで対応可能な範囲を明確にする。次に、将来的な拡張性や保守運用の観点から、長期的なコストを試算することが重要である。短期的な開発コスト削減だけを見て判断すると、運用フェーズで想定外の負担が発生する。成功企業は、ローコードと従来型開発を適材適所で使い分けている。すべてをローコードで賄おうとせず、業務特性に応じた最適な開発手法を選択することが、DX推進における重要な判断軸となる。

まとめ

ローコードは万能ではない。定型業務や小規模アプリには有効だが、複雑な基幹システムには不向きである。成功の鍵は、業務特性を正しく見極め、適切な領域に適用すること。導入前の計画策定と、段階的なアプローチが失敗を防ぐ最善策である。ツールの特性を理解し、戦略的に活用することでDX推進を加速させよう。

続きを見る >

予算ブレの原因

開発の変動要因

システム開発は長期にわたることが多く、また未来の不確実性の中で予算を策定しなくてはいけないことがある。セキュリティーをはじめ動作環境の変化や人員の欠如、予期していなかった仕様の発覚などが原因だ。

目標変化と予算

進捗率は目的地が明確に設定されていれば数字を負うことで予算達成率を算出することができる。しかし、目的地が近い遠いのは無しではなく、根本的な目的地がなくなったり、複数になったりすることがシステム予算の策定の難しいところである。

計画型開発法

システムに未来を見ることができればブレない、見えないことをすべて調査の上で着手できれば確実な予算と実行が可能である。進捗率の報告が可能になる。フォーターフォールモデルなのでコストがかかることと時間がかかることの覚悟が必要だ。途中での方向修正は原則できない。

柔軟な開発手法

逆に低予算で早く導入するなら、見えにくくなるデメリットがある。状況によって対応を素早く変化させる必要があるため進捗率を算出しにくい。アジャイル開発と呼ばれるものであり、社内開発であることが理想である。途中で出てくる条件に対しても柔軟に方向性を変化させることが可能である。

まとめ

アジャイル開発で予算を立てるときは、1.5-2.5倍くらいを目安に余裕を持って設定することを推奨する。

続きを見る >