運用の昇華

開発現場の想定外

基幹システムの開発現場では、最初に想定した仕様とは異なる業務フローが後から発覚することが多い。

マネジメントの試金石

後から発覚した業務フローは、すでに構築が進んでいるシステムに組み込むことが難しいため、どのように対応するかがプロジェクトマネージャーの腕の見せ所である。

プロジェクトの舵取り

プロジェクトマネージャーとは何かと問われたときに、一言で言い表すならば、不測の事態にどのように対応できるか、ということではないかと考える。プロジェクトが何の問題もなく、完遂できることは少ない。したがって、イレギュラーケースが発生した時にどのような手立てを打てるか、迅速に行動できるかがプロジェクトマネージャーのレベルとなる。

パートナーシップの重要性

プロジェクトマネージャーがシステムの完成しか考えていなければ、途中から発覚した仕様は「運用でカバーせよ」とユーザー側に責任を押し付けてしまうことがある。しかし、より良いシステムを目指す、パートナーとしてであればこの回答は好ましくない。

まとめ

どのような事象がきっかけで、途中で使用漏れが発覚したのか、プロジェクトの進行状況を見ながら、ひも解くことが重要である。運用でカバーというユーザー側だけにだけ負担をさせるのではなく、運用をカバーするようなシステムを構築できるのが理想である。

関連記事

技術的負債の返済方法

負債の本質

技術的負債には、設計負債やコード負債がある。金銭的な負債であれば借入金やマイナスの表記で数字化できるのだが、技術的負債においては数字化できないことがとても難しい点である。経営に関するほとんどのことは定量化や定性化が可能だが、たとえば企業創業者の発想する「野生の勘」を直接的に数字化できないように技術的負債も一筋縄では見える化しない。

設計時の対策

技術的負債の中でもコード負債については、システム開発の現場からよく発想されるリファクタリングや再構築などを行うことで比較的わかりやすい返済方法となる。知らない人が作ったプログラムや古くなったプログラムのバージョンなど、リスクを表現し対応することができる。何よりも最初の企画設計段階で負債が積みあがりにくい仕組みを考えることが大切である。

高負担な設計

技術的負債の中でも利息の高い負債が設計負債である。単体機能における設計であれば、モジュールごとの再設計によって返済が可能である。しかし、プログラムは複数のモジュールが絡まり合っていることがほとんどなので、複雑なオペになってしまう。また、稼働中のシステムにわざわざ再設計したプログラムを導入するリスクに対して、得れるメリットも少ないので見過ごされがちである。設計能力は例えば、紙というオブジェクトのメソッド(振る舞い)とプロパティ(保持する情報)を聞いて正しい答えが帰ってくれば多少安心であろう。紙の振る舞いは燃えるであり保持する情報は面積などがある。

根本的解決

しかし、技術的負債はこのように目に見えやすい設計負債やコード負債が致命的になることは少なく、やはりその上層でどのような指針に基づいてシステム運用がなされてきたか、また長期視点で一貫したメンテナンスを行うことが必要である。システムの維持には保守費用や運用費用を払っていることが多いと思うが、これだけでは将来の負債を減らしていくことはできない。やはり、鳥の目を持つITコンサルタントやITアナリストなどの役割を持つメンバーが必要である。

まとめ

ITコンサルタントやアナリストは、すぐに利益も生まない、経費を削減するわけでもないといったコストセンターとしてのポジションなので、あまり起用していない中小企業も多いようである。投資に対する効果が見えにくいのは、料理でいう香辛料と同じなのかもしれない。その少しの投資が未来を大きく変えることになる。IT技術は日進月歩で発展するからである。

続きを見る >

予算ブレの原因

開発の変動要因

システム開発は長期にわたることが多く、また未来の不確実性の中で予算を策定しなくてはいけないことがある。セキュリティーをはじめ動作環境の変化や人員の欠如、予期していなかった仕様の発覚などが原因だ。

目標変化と予算

進捗率は目的地が明確に設定されていれば数字を負うことで予算達成率を算出することができる。しかし、目的地が近い遠いのは無しではなく、根本的な目的地がなくなったり、複数になったりすることがシステム予算の策定の難しいところである。

計画型開発法

システムに未来を見ることができればブレない、見えないことをすべて調査の上で着手できれば確実な予算と実行が可能である。進捗率の報告が可能になる。フォーターフォールモデルなのでコストがかかることと時間がかかることの覚悟が必要だ。途中での方向修正は原則できない。

柔軟な開発手法

逆に低予算で早く導入するなら、見えにくくなるデメリットがある。状況によって対応を素早く変化させる必要があるため進捗率を算出しにくい。アジャイル開発と呼ばれるものであり、社内開発であることが理想である。途中で出てくる条件に対しても柔軟に方向性を変化させることが可能である。

まとめ

アジャイル開発で予算を立てるときは、1.5-2.5倍くらいを目安に余裕を持って設定することを推奨する。

続きを見る >

業務可視化によるDX推進

真の業務改善への道筋

いきなり顕在化しているアナログをデジタル化するだけでは業務改善とは言えない。真の業務改善を実現するためには、表面的な問題解決ではなく、根本的な業務の見直しが必要である。業務を可視化して正しい業務分析を行うためには、ある程度のステップを踏む必要がある。単純なデジタル化は一時的な効率化にとどまり、長期的な競争力向上には繋がらない。

目的とゴール設定

まず、目的とゴールを明確にする必要がある。なぜ業務分析をするのか、何を達成したいのかを明文化することが重要である。例えば、「手戻りを3割減らす」「問い合わせ対応時間を半分にする」「余剰コストを1千万円削減する」などの具体的な数値目標を設定する。曖昧な目標設定では、後の分析や改善施策の効果測定が困難になってしまう。定量的で測定可能な目標を立てることで、分析の方向性が明確になり、成果を客観的に評価できるようになる。

業務の可視化技法

現在の作業タスクのすべてをまずは網羅的に洗い出して、分類を行う。複数担当者で付箋にタスクを書き出し、重要度マトリクスや緊急度マトリクスで整理する方法が非常に有効である。また、必ず用意しておきたいのが、業務フロー図と業務の分担表である。誰が、いつ、どこで、何をしているかを図式化することで、無駄や重複、ボトルネックが浮き彫りになる。このプロセスにより、今まで見えなかった非効率な作業や不要なプロセスを発見できるのである。

根本原因の探求

課題の本質がまとまったら、重要な事項と緊急の事項などを切り分けて、本質的ではない事項は思い切って削除や軽減を検討する。また、抽出した課題は小さな原因に分解していき、根本原因を探る(要因分析)。リソースが限られる場合には、ABC分析(例えば顧客ランク別)で、重要顧客に注力できるよう業務配分や訪問頻度などを見直す。定量データや日報などのログ、クレームデータの活用も効果的である。AIで課題を解決するより前に、膨大な過去データをAIに処理させるのも良いだろう。

まとめ

定量化・定性化できれば、効果検証につなげる改善策と実行計画を策定する。正しい業務分析とは、単なるデジタル化ではなく明確な目的に基づいて、ボトルネックを可視化し、データと構造化された分析を行うことなのである。継続的な改善こそが真のDXを実現する。

続きを見る >