運用の昇華

開発現場の想定外

基幹システムの開発現場では、最初に想定した仕様とは異なる業務フローが後から発覚することが多い。

マネジメントの試金石

後から発覚した業務フローは、すでに構築が進んでいるシステムに組み込むことが難しいため、どのように対応するかがプロジェクトマネージャーの腕の見せ所である。

プロジェクトの舵取り

プロジェクトマネージャーとは何かと問われたときに、一言で言い表すならば、不測の事態にどのように対応できるか、ということではないかと考える。プロジェクトが何の問題もなく、完遂できることは少ない。したがって、イレギュラーケースが発生した時にどのような手立てを打てるか、迅速に行動できるかがプロジェクトマネージャーのレベルとなる。

パートナーシップの重要性

プロジェクトマネージャーがシステムの完成しか考えていなければ、途中から発覚した仕様は「運用でカバーせよ」とユーザー側に責任を押し付けてしまうことがある。しかし、より良いシステムを目指す、パートナーとしてであればこの回答は好ましくない。

まとめ

どのような事象がきっかけで、途中で使用漏れが発覚したのか、プロジェクトの進行状況を見ながら、ひも解くことが重要である。運用でカバーというユーザー側だけにだけ負担をさせるのではなく、運用をカバーするようなシステムを構築できるのが理想である。

関連記事

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >

ノーコード・ローコード比較

新たな開発手法

近年、ビジネスのデジタル化が加速する中で、ノーコード・ローコードツールが注目を集めている。従来のシステム開発では専門的なプログラミング知識が必須だったが、これらのツールを使えば、非エンジニアでも直感的な操作でアプリケーションやWebサイトを構築できる。開発期間の短縮やコスト削減が可能になることから、スタートアップから大企業まで幅広く導入が進んでいる。

主要ツール

ノーコードツールの代表例としては、Webサイト構築に強いBubbleやWebflow、業務アプリ開発に適したKintoneやAppSheet、自動化に特化したZapierなどがある。Bubbleは柔軟性が高く複雑な機能も実装可能だが、学習コストはやや高めである。Webflowはデザイン性に優れ、マーケティングサイトに最適だ。Kintoneはデータベース管理に優れ、日本企業での導入実績が豊富で、承認フローなど日本の業務習慣に対応している。一方、ローコードツールではMicrosoft Power AppsがOffice 365との連携に強く、OutSystemsは大規模エンタープライズ向けで基幹システム開発にも対応可能である。料金体系も月額制からユーザー課金制まで多様で、自社の規模に合わせた選択ができる。

両者の違い

ノーコードとローコードの最大の違いは、カスタマイズ性と技術的な介入度である。ノーコードは完全にコード記述なしで開発できる反面、複雑な要件には対応しきれない場合がある。ローコードは基本的な部分は視覚的に構築しつつ、必要に応じてコードを追加できるため、より高度な機能実装が可能だ。選択時のポイントは、開発したいシステムの複雑さ、既存システムとの連携要件、将来的な拡張性、そして社内の技術リソースである。シンプルな業務アプリならノーコード、基幹システム連携が必要ならローコードが適している。

導入のポイント

ノーコード・ローコードツールの導入を成功させるには、いくつかの注意点がある。まず、無料プランで試用し、実際の業務フローに合うか検証することが重要だ。また、ベンダーロックインのリスクを考慮し、データのエクスポート機能やAPI連携の可否を確認すべきである。セキュリティ要件も見逃せない。特に顧客情報を扱う場合は、各ツールのセキュリティ認証やデータ保存場所を確認する必要がある。さらに、導入後の運用体制も計画的に整備し、社内でのツール活用スキルを育成することが、長期的な成功につながる。

まとめ

ノーコード・ローコードツールは、企業のDX推進を加速させる強力な手段である。適切なツールを選定し、自社の課題に合わせて活用することで、開発コストを抑えながらスピーディーにシステムを構築できる。まずは小規模なプロジェクトから始め、成功体験を積み重ねながら展開していくことを勧める。デジタル化の第一歩として、ぜひ検討すべきだろう。

続きを見る >

DX伴走支援の成否 –丸投げと真の伴走の違い–

伴走支援の落とし穴

多くの企業がDX推進のために「伴走支援」を謳うコンサルティング会社に依頼するが、期待した成果が得られず終わるケースが後を絶たない。その原因の多くは、「伴走」という名目でありながら、実態は「丸投げ」になっているためだ。発注側も受注側も、伴走支援の本質を理解しないまま契約を結び、プロジェクトが進むにつれて認識のずれが明確になる。結果として、導入したシステムが活用されない、現場が混乱する、投資対効果が見えないという事態に陥る。

丸投げ支援の特徴

失敗する「丸投げ型支援」には明確な特徴がある。まず、コンサルタントが一方的に最新ツールやシステムを提案し、現場の業務フローや課題を十分にヒアリングしない。次に、導入後の運用は企業側に任せきりで、定期的なフォローアップがない。さらに、従業員への教育や研修が形式的で、実際の業務に即した内容になっていないのだ。このような支援では、高額なシステムを導入しても現場に定着せず、結局は以前の方法に戻ってしまう。経営層だけが満足して終わる「見せかけのDX」になってしまうのである。

真の伴走支援とは

では、真の「伴走支援」とは何か。第一に、企業の現状を深く理解することから始まる。業務フロー、従業員のスキルレベル、社内の文化まで把握したうえで、最適なDX戦略を設計する。第二に、導入プロセス全体に伴走者が関与し、現場の声を拾いながら柔軟に軌道修正する。システムを導入して終わりではなく、定着するまで継続的にサポートするのだ。第三に、従業員が自走できるよう、実践的な教育を提供する。マニュアルを渡すだけでなく、実際の業務シーンを想定したトレーニングを行い、疑問にその場で答える。つまり、企業と同じ目線で課題に向き合い、成果が出るまで責任を持つのが真の伴走支援である。

支援会社の選び方

伴走支援を選ぶ際は、いくつかの判断基準がある。まず、過去の実績と具体的な成果指標を確認すべきだ。単なる導入事例ではなく、導入後の定着率や業務効率の改善率などの数値データを提示できるかが重要である。次に、初回のヒアリングで、どれだけ深く現場の課題を掘り下げようとするかを見極める。表面的な質問だけで終わる会社は要注意だ。さらに、契約内容に導入後のサポート期間や具体的な支援内容が明記されているかを確認する必要がある。曖昧な表現ではなく、何を、いつまで、どのように支援するのかが明確であることが、真の伴走支援を提供する会社の証である。

まとめ

DX伴走支援の成否は、「丸投げ」か「真の伴走」かで決まる。表面的なシステム導入ではなく、現場に寄り添い、定着まで責任を持つパートナーを選ぶことが、DX成功への第一歩だ。明確な成果指標と継続的なサポート体制を持つ支援会社と組むことで、投資を確実に成果に変えることができる。

続きを見る >