運用の昇華

開発現場の想定外

基幹システムの開発現場では、最初に想定した仕様とは異なる業務フローが後から発覚することが多い。

マネジメントの試金石

後から発覚した業務フローは、すでに構築が進んでいるシステムに組み込むことが難しいため、どのように対応するかがプロジェクトマネージャーの腕の見せ所である。

プロジェクトの舵取り

プロジェクトマネージャーとは何かと問われたときに、一言で言い表すならば、不測の事態にどのように対応できるか、ということではないかと考える。プロジェクトが何の問題もなく、完遂できることは少ない。したがって、イレギュラーケースが発生した時にどのような手立てを打てるか、迅速に行動できるかがプロジェクトマネージャーのレベルとなる。

パートナーシップの重要性

プロジェクトマネージャーがシステムの完成しか考えていなければ、途中から発覚した仕様は「運用でカバーせよ」とユーザー側に責任を押し付けてしまうことがある。しかし、より良いシステムを目指す、パートナーとしてであればこの回答は好ましくない。

まとめ

どのような事象がきっかけで、途中で使用漏れが発覚したのか、プロジェクトの進行状況を見ながら、ひも解くことが重要である。運用でカバーというユーザー側だけにだけ負担をさせるのではなく、運用をカバーするようなシステムを構築できるのが理想である。

関連記事

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >

AIの教師モデル開発や画像のタグ付けを目的としたBPO的なプロジェクトにはベトナムオフショアが向いている理由

AI教師モデルにおけるBPOの重要性

AI技術の急速な進化により、教師モデルの構築が重要視されています。テキスト型のAIだけでなく、画像認識などの領域でも教師モデルの役割は増大しています。これらのモデルの開発には人手によるタグ付けや手作業が不可欠です。こうした教師モデルのプロジェクトをBPO(ビジネス・プロセス・アウトソーシング)としてオフショアに委託することで、労働力の確保とコスト効率の向上を図ることが可能です。

ベトナムのBPOにおけるアドバンテージ

ベトナムはBPOプロジェクトにおいて、他の国に比べてアドバンテージを持っています。BPOの重要な要素は末端のワーカーがコンピューターベースのルールに基づいた作業を行うことです。ベトナムは安価な人件費を提供し、労働力の習熟度が高いため、大量生産に適しています。また、日本との文化的類似性や日本語の理解により、コミュニケーションがスムーズに行われます。これらの要素により、ベトナムはBPOにおける優れた選択肢となっています。

ベトナムのBPOのマネジメントと技術力はこなれてきている

BPOプロジェクトにおいては、マネジメントと技術力の確保が重要です。ベトナムはこれらの点においても成熟しています。効率的なプロジェクトマネジメントを行うことで、タグ付けやデータ整理などの作業が円滑に進行します。また、BPOにおいて必要なコンピューター作業に対するリテラシーも高く、新しい技術分野にも積極的に対応しています。ベトナムの成長に伴い、BPOの品質と効率は更なる向上が期待されます。

BPOにおけるコミュニケーターの重要性

BPOのプロジェクトには、ルールやマニュアルを作成する段階でコミュニケーターが重要な役割を果たします。ルールの策定には様々な要素が考慮される必要があり、ベトナム側からのフィードバックも重要です。コミュニケーターは日本とベトナムの文化や言語の違いを理解し、円滑なコミュニケーションを図ることで、プロジェクトの成果物の品質向上に寄与します。

AIでのコスト優位性の確保のための戦略的投資

AI技術の製品化において、BPO部分のコストダウンが重要な課題となります。ベトナムに安定したAIのためのBPO作業をオフショアにすることで、コストセンターの効率化を図ることができます。将来的にAI技術はますます製品化が進み、BPOの需要も増加することが予想されます。そうした中で、ベトナムのアドバンテージを活かした戦略的な投資により、ソフトウェア開発企業のマネージャは競争力を強化し、成功につなげることができるでしょう。

続きを見る >

Figma AIが変えるUI/UX開発

開発現場の変革

2025年、デザインツールFigmaに搭載されたAI機能が業界に衝撃を与えている。Figma Makeは、AIチャットを通してプロンプトを入力すると、UIデザインを自動生成する。従来、画面設計には専門的なスキルと多大な工数が必要だったが、テキスト入力だけでデザインが生成される時代が到来した。この変化は単なる効率化ではなく、開発プロセスそのものの再定義を意味している。

主要機能

Figma AIは、機械学習を活用したデザインアシスタント機能である。画像生成、背景削除、解像度向上に加え、モックアップへのリアルなテキスト追加やトーン調整が可能だ。さらに注目すべきは「Figma Make」の登場である。Figma Makeは、Figma社が提供するAIデザイン生成ツールだ。テキストで指示を入力すると、UIデザインや画面構成、コンポーネントなどを自動生成する。デザインシステムの公開ライブラリをデザインに反映でき、生成したデザインデータをFigmaのフレームに還元できる点が大きな強みとなっている。

具体的メリット

Figma AI導入による最大のメリットは、開発スピードの劇的な向上である。UIを作るのに通常半日かかる作業も、0フェーズのプロジェクトであれば1時間程度である程度整ったプロトタイプが生成できるため、スピード面で大きく工数を削減できる。また、Figma Makeはチームメンバーやプロダクトオーナー、カスタマーサクセスの方々とやり取りする際に言語化しづらい領域をデザインで表現できる点が強みだ。アイディアレベルのものも即座に形にしてフィードバックを受けられることで、意思決定の迅速化と手戻りの削減が実現する。非デザイナーでもアイデアを視覚化できるため、部門間コミュニケーションが円滑になる。

留意点と活用法

Figma AIの導入にあたっては、適切な活用領域の見極めが重要である。現時点では既存プロダクトの運用フェーズでフル活用するのはまだ難しいものの、新規プロジェクトやモックアップ作成には十分効果的と評価されている。生成されるコードはReactベースの構成になっているため、既存技術スタックとの整合性確認も必要だ。Figma Makeは他職種のメンバーとのコミュニケーションをスムーズにし、アイディア出しを活発にするための共通の思考ツールとしても活用できる点を踏まえ、段階的な導入計画を立てることが成功の鍵となる。まずはパイロットプロジェクトでの検証から始めることを推奨する。

まとめ

Figma AIとFigma Makeは、UI/UX開発の在り方を根本から変革するポテンシャルを秘めている。チャットによるデザイン生成は、開発工数の削減だけでなく、チーム全体の創造性向上とコミュニケーション活性化をもたらす。ただし、既存ワークフローとの統合や適切な活用領域の選定には専門的な知見が求められる。

続きを見る >