運用の昇華

開発現場の想定外

基幹システムの開発現場では、最初に想定した仕様とは異なる業務フローが後から発覚することが多い。

マネジメントの試金石

後から発覚した業務フローは、すでに構築が進んでいるシステムに組み込むことが難しいため、どのように対応するかがプロジェクトマネージャーの腕の見せ所である。

プロジェクトの舵取り

プロジェクトマネージャーとは何かと問われたときに、一言で言い表すならば、不測の事態にどのように対応できるか、ということではないかと考える。プロジェクトが何の問題もなく、完遂できることは少ない。したがって、イレギュラーケースが発生した時にどのような手立てを打てるか、迅速に行動できるかがプロジェクトマネージャーのレベルとなる。

パートナーシップの重要性

プロジェクトマネージャーがシステムの完成しか考えていなければ、途中から発覚した仕様は「運用でカバーせよ」とユーザー側に責任を押し付けてしまうことがある。しかし、より良いシステムを目指す、パートナーとしてであればこの回答は好ましくない。

まとめ

どのような事象がきっかけで、途中で使用漏れが発覚したのか、プロジェクトの進行状況を見ながら、ひも解くことが重要である。運用でカバーというユーザー側だけにだけ負担をさせるのではなく、運用をカバーするようなシステムを構築できるのが理想である。

関連記事

なぜベトナムはERPシステム開発に向いているか

ベトナムは、ERPシステムの開発を行うのに適した場所と言えます。特に、日本企業が自社の生産拠点や流通拠点をベトナムに持っている場合や、ERPシステムが過去に作成したwebベースのものである場合は特に向いています。ここでは、その理由について解説します。


ベトナムの市場理解と製造業との親和性

ERPは業務に直結したシステムであるため、業務理解と市場の理解が欠かせません。ベトナムを生産拠点にしていたり、ベトナム市場に製品を販売している日本企業は多いため、そのような日本企業はベトナムの物流や製造現場に慣れているからです。ベトナムの市場理解と製造業との連携により、ERPシステムの在庫管理など、製造業に特化した機能を効果的に開発することができます。これにより、生産管理や物流効率の向上を実現し、ビジネスの競争力を強化することができるでしょう。

ベトナムにおける既存の知識と日本語通訳者の能力

トナム人の日本語通訳者の能力も向上しており、生産や流通に関わる日本語も習得しています。これにより、ERPシステム開発プロジェクトの効率性が向上し、品質の高い成果物を生み出すことができます。

ベトナム国内には、日本企業の製造や流通、決済に関する知識が蓄積されています。日本企業の進出が主に製造業から始まったため、ベトナムではこれまでに日本独自の慣習や用語についての理解が深まってきました。このような環境下でERPシステムを開発することで、ベトナムとの意思疎通がスムーズに行われ、開発段階での要件の理解に対しての円滑なコミュニケーションが可能です。ベ

ベトナムのオフショア開発の特質と既存システムの改善

ベトナムのソフトウェア業界は、オフショア開発からスタートし、成熟した実装能力を持っています。しかし、そのような経緯のために上流工程については苦手です。要件定義や仕様作成の段階からベトナムに丸投げしてしまうのはあまり良いこととは言えません。その部分は日本側で行い、実装段階をベトナムで行なうのが良いでしょう。

特に20年前からのWebベースのERPシステムのリプレースや改善をする場合は、ベトナムは適切な場所と言えます。過去に作成された既存のシステムは現在の技術やセキュリティ基準に合致していない場合があります。しかし、ベトナムの開発者が現代的な技術を使ってUIやUXの改善に取り組むことで、既存システムの現代化やセキュリティの強化が可能です。 具体的には、DBはそのままにして、古い技術で作られているフロントエンド部分をリプレースすると言ったプロジェクトが良いでしょう。

続きを見る >

生成AI失敗の3要因

期待と現実の乖離

生成AIを導入したものの、思うような成果が出ずに悩む企業が増えている。「話題だから」「競合が使っているから」という理由で導入したケースでは、現場から「結局使えない」という声が上がることも珍しくない。実は、生成AIで成果が出ない原因の多くは、ツール自体の問題ではなく、導入プロセスや運用体制に潜んでいる。本記事では、成果が出ない3つの主要因を解説する。

曖昧なゴール設定

成果が出ない最大の原因は、導入目的が不明確なことである。「業務効率化」という漠然とした目標では、具体的に何を効率化するのか、どの程度の改善を目指すのかが見えない。結果として、現場は何にAIを使えばいいかわからず、試しに使ってみても効果を実感できないまま放置される。成功している企業は「議事録作成時間を50%削減」「問い合わせ対応の一次回答を自動化」など、測定可能な目標を設定している。目的が明確であれば、適切なツール選定も、効果測定も、改善サイクルも回しやすくなる。

教育不足の弊害

二つ目の原因は、従業員への教育不足である。生成AIは万能ではなく、適切なプロンプト設計や出力結果の検証スキルが求められる。しかし多くの企業では「ツールを入れれば自然と使われる」と考え、十分な研修を実施していない。その結果、一度試して期待外れの回答が返ってきた社員は「使えない」と判断し、二度と触らなくなる。三つ目の原因は、業務との不適合である。定型的な作業や創造的な文章生成には強みを発揮するが、高度な専門判断や最新情報が必要な業務には向かない。自社の業務特性を分析せずに導入すると、AIの強みを活かせない領域で無理に使おうとして失敗する。

成功の3条件

生成AIで成果を出すためには、三つのポイントを押さえる必要がある。第一に、具体的で測定可能な導入目的を設定すること。第二に、継続的な教育プログラムを通じて社員のAIリテラシーを高めること。第三に、自社業務を棚卸しし、AIが得意な領域と苦手な領域を見極めたうえで適用範囲を決めることである。これらは当たり前のように聞こえるが、実際に徹底できている企業は少数派だ。逆に言えば、この基本を押さえるだけで、競合との差別化が可能になる。生成AIは正しく活用すれば強力な武器となるが、準備なき導入は失敗の元である。

まとめ

生成AIで成果が出ない原因は、目的の不明確さ、教育不足、業務との不適合の三点に集約される。これらはいずれもツール導入前の準備段階で解決できる課題だ。成功の鍵は、明確な目標設定、継続的な人材育成、そして業務特性に応じた適切な活用領域の選定にある。基本を徹底することが、AI活用の成否を分けるのである。

続きを見る >

従来開発 vs ローコード開発比較

基本概念

企業のデジタル化が加速する中、システム開発手法の選択は事業成功の鍵を握る重要な決断となっている。従来開発は、プログラマーがコードを一から書き上げる伝統的な手法で、高い技術力と豊富な経験が求められる。一方、ローコード開発は視覚的なインターフェースを活用し、最小限のコーディングでアプリケーションを構築する革新的なアプローチである。両者の特徴を正しく理解することで、プロジェクトに最適な選択が可能になる。

費用対効果

従来開発では高度なスキルを持つエンジニアの確保が必要で、人件費が開発コストの大部分を占める。特に大規模プロジェクトでは、設計から実装、テストまで長期間の人的リソースが必要となり、総コストは数千万円規模に達することも珍しくない。対してローコード開発は、専門知識が少ない人材でも短期間でアプリケーション構築が可能で、初期投資を大幅に削減できる。しかし、プラットフォームのライセンス費用や将来的なカスタマイズ制約を考慮すると、長期的なコスト効率は慎重に検討する必要がある。

開発速度

開発期間において両手法の差は歴然としている。従来開発では要件定義から本格運用まで数ヶ月から数年を要するケースが一般的で、複雑な機能実装には綿密な設計と段階的な開発が必要である。一方、ローコード開発は既存のテンプレートやコンポーネントを活用することで、数日から数週間での迅速なプロトタイプ作成が可能である。特にビジネスアプリケーションや内部管理システムでは、従来開発の10分の1以下の期間で実装できる場合もある。ただし、複雑なロジックや高度な機能が必要な場合は、結果的に従来開発と同等の期間を要することもあるため、プロジェクトの性質を見極めることが重要である。

品質と制約

システムの品質面では、それぞれ異なる特徴がある。従来開発は細部まで制御可能で、パフォーマンス最適化や独自機能の実装において高い品質を実現できる。セキュリティ要件が厳格なシステムや大量データ処理が必要な基幹システムでは、従来開発の柔軟性が威力を発揮する。ローコード開発は標準化されたコンポーネントを使用するため、一定の品質は保証されるが、プラットフォーム依存による制約がある。また、複雑な業務ロジックの実装や外部システムとの高度な連携において、期待する品質レベルに到達できない可能性もある。品質要件と開発リソースのバランスを慎重に評価することが成功の鍵となる。

まとめ

最適な開発手法の選択は、プロジェクトの目的、予算、期間、品質要件を総合的に評価して決定すべきである。ローコード開発は迅速性とコスト効率に優れ、内部業務システムや簡易的なWebアプリケーション開発に適している。従来開発は高い技術的要求や独自性が必要なシステムに最適である。重要なのは、どちらか一方に固執するのではなく、各プロジェクトの特性に応じて柔軟に選択することである。

続きを見る >