効率化の誤解

目標設定の要諦

SESと呼ばれる派遣や準委任契約では、プロジェクトを完遂することが難しいとしている。これはゴールが未設定であったり、曖昧になってしまう場合が多くあるからである。ゴールの設定や未来像は非常に重要で、プロジェクトマネージャーなどリーダーが必ず持っておくべき指針である。

真のリーダー像

システム開発に参画するメンバーは一般的に経歴書やスキルシートによって決まる。プロジェクト経験数が多かったり、扱える言語が多かったりするだけでは、本当のスキルは推しはかれない。やはり、確認すべきは不測の事態が起きたときの対処方法を豊富に持つリーダーが必要となる。

アジャイルの本質

犬小屋を建てるときに設計書はいらないが、マンションを建てるには設計書がいる。アジャイル開発といっても、例えばマンションを設計図なしに建てるといったことを考えるとある程度は見通しや知見などを持つメンバーが方向性を決めていく必要がある。システム開発はその時その時の条件によっていい悪いの判断軸が変わる。さらに時間の経過でも判断軸が変化していくのである。

部分最適の罠

日本には「カイゼン」という高度経済成長期を支えた力強い言葉がある。しかし、時と状況によって判断軸が変わるソフトウェアという無形財産の前では、「善」に「改」めることができているのか、変化してしまう背景がある。職人気質である国民性も相まって、どうしても部分改善、部分最適を繰り返してしまうというプロジェクト現場が少なくない。

まとめ

システム運用や保守における部分最適は必ずしも全体最適になるわけではない。むしろ、この部分最適が全体を考えたときの労働生産性を下げていることすらある。小回りが利く人であればあるほど属人化してしまったりするため、誰が全体最適を見るのがベストなのか、改めて考える必要がある。

関連記事

フルスクラッチは体力

開発手法の選択

フルスクラッチかパッケージか、最近ではSaaSなどもシステム構築の検討に入る。実は開発手法やツールよりも、どのようなシステムで、どれくらいの規模のシステム開発会社が担当するかが重要である。

SESのリスク

人数が多い会社であればあるほど安心感があってよいと安易に考えることは適切ではない。なぜなら、SE派遣やSESと呼ばれる人月(人工)単位で売り上げの経つ会社には技術の総合力がないからである。

技術の総合力

技術の総合力とは、SE作業やプログラミング作業などの1人で対応できる技術力を差すのではなく、システム構築やシステムの運用全般における最適手段を考えることができる能力のことである。

表層の即効性

SE派遣やSESの付加価値はその人単体のプログラミング能力に偏るため、一見対応がよく、何も問題がないように思える。しかし、これが技術的負債を作ってしまうひとつの要因でもある。

まとめ

フルスクラッチを考えるなら、SESを中心としないシステム会社で且つ人数規模も多い方がよい。安価にフルスクラッチでシステムを構築してしまうと、メンテナンスや運用でしっぺ返しが待っている。時間が経つごとにシステム保守費用が高くなるのである。

続きを見る >

2025年AI活用トレンド

2025年のAI活用

2025年は企業におけるAI活用が実証実験から本格導入へと移行する転換期となっている。生成AI市場は急速な拡大を続けており、専門人材の不足を補うソリューションとして中堅企業にも急速に普及が進んでいる。大手企業では数百億円規模の投資計画が発表され、業務効率化だけでなく新規事業創出への期待も高まっている。本記事では、2025年に押さえておくべきAI活用の主要トレンドを解説する。

自律型AIエージェントの台頭

2025年の最大のトレンドは「AIエージェント」の台頭である。エージェント型AIは、ユーザーが設定した目標に向けて自律的に計画を立て行動する新しいAIシステムであり、従来のAIアシスタントとは異なり人間からの直接的な指示がなくても主体性を持って行動できる点が特徴である。また、画像、音声、テキストを統合的に処理するマルチモーダル技術の進化により、業務プロセスは新たな段階へと移行している。複数の情報形式を同時に分析することで、これまで見えなかった相関関係の発見が可能となり、意思決定の精度向上に貢献している。

成功と失敗の分岐点

一方で、AI導入には課題も存在する。2024年の実績から、導入効果に大きな差が生じていることも明らかになってきた。成功企業と失敗企業の分岐点として、経営層のコミットメント、段階的な展開計画、現場との密な連携が挙げられている。さらにAIの過剰な期待の時代から、AIの成果が問われる時代へと移行しており、企業は投資から明確で測定可能な価値を生み出す準備が求められている。加えて、AIガバナンスと偽情報対策の重要性も増しており、AIの責任ある活用と安全な運用が求められている。セキュリティリスクへの対応も含め、戦略的なAI導入計画の策定が不可欠となっている。

段階的導入の重要性

AI活用を成功させるためには、いきなり大規模導入を目指すのではなく、自社の課題を正確に把握した上で小規模な実証実験から始めることが推奨される。成功企業に共通するのは、経営層の強いコミットメント、段階的な展開計画、そして現場との密な連携である。特に重要なのは、AIを単なるツールとしてではなく、業務プロセス全体を見直す契機として捉えることである。現場の声を反映しながら、継続的な改善サイクルを回すことで、投資対効果を最大化できる。外部の専門家による伴走支援を受けながら、自社に最適なAI活用戦略を構築していくことが成功への近道となるであろう。

まとめ

2025年のAI活用は、AIエージェントやマルチモーダル技術の進化により大きな転換期を迎えている。しかし、成果を出すためには段階的な導入計画と現場との連携が不可欠である。ROIの実証やガバナンス体制の構築も含め、戦略的なアプローチでAI活用を推進していくことが求められている。

続きを見る >

中小企業のローコード活用法

ローコードの重要性

中小企業の経営者は、システム開発に数百万円かかると諦めがちである。しかし実際は、ローコード・ノーコードツールの進歩により、従来の1/10のコストと時間でビジネスアプリケーションを構築できる時代となった。大企業のような潤沢なIT予算がなくても、スピーディーで柔軟なシステム開発が可能になったのだ。むしろ、意思決定が早く、組織がフラットな中小企業の方が、ローコードの恩恵を最大限に活用できる環境が整っているといえるだろう。

コスト削減効果

ローコード導入により、中小企業は複数の大きなメリットを享受できる。まず開発コストの大幅削減である。従来のスクラッチ開発では500万円かかっていたシステムが、ローコードなら50万円程度で実現可能となる。次に開発期間の短縮効果も見逃せない。半年かかっていたプロジェクトが1〜2ヶ月で完成し、市場投入スピードが格段に向上する。さらに、専門的なプログラミング知識がなくても、現場の業務を理解している社員が直接システム構築に参加できるため、真にビジネスニーズに合致したアプリケーションが生まれるのである。

成功のポイント

実際にローコード導入で成功を収めた中小企業には共通する特徴がある。第一に、経営層がデジタル変革の重要性を理解し、積極的にサポートしていることだ。トップダウンでの推進により、組織全体の協力を得やすくなる。第二に、小さく始めて段階的に拡大するアプローチを取っていることである。いきなり基幹システムを刷新するのではなく、顧客管理や在庫管理など特定の業務から始めて成功体験を積み重ねている。第三に、社内のキーパーソンをローコード開発の推進役として育成し、継続的な改善サイクルを構築していることが挙げられる。これらの要素が揃うことで、導入効果が最大化されるのだ。

競争優位の実現

ローコードは単なるツールではない。中小企業が大企業と対等に競争できる武器であり、むしろ機動力を活かして大企業を上回る成果を生み出せる可能性を秘めている。従来のシステム開発では不可能だった「現場主導のデジタル化」が実現し、真の意味でのDX推進が可能となる。重要なのは、完璧を求めすぎずに、まず一歩を踏み出すことだ。小さな成功体験から始めて、徐々に範囲を拡大していけば、必ず大きな成果につながる。

まとめ

中小企業にとってローコードは、限られた予算と人材でも効果的なシステム開発を実現できる革新的なソリューションである。コスト削減、開発期間短縮、現場主導の改善という三つの大きなメリットを活用し、段階的なアプローチで導入を進めることが成功の鍵となる。デジタル変革は大企業だけの特権ではないのだ。

続きを見る >