効率化の誤解

目標設定の要諦

SESと呼ばれる派遣や準委任契約では、プロジェクトを完遂することが難しいとしている。これはゴールが未設定であったり、曖昧になってしまう場合が多くあるからである。ゴールの設定や未来像は非常に重要で、プロジェクトマネージャーなどリーダーが必ず持っておくべき指針である。

真のリーダー像

システム開発に参画するメンバーは一般的に経歴書やスキルシートによって決まる。プロジェクト経験数が多かったり、扱える言語が多かったりするだけでは、本当のスキルは推しはかれない。やはり、確認すべきは不測の事態が起きたときの対処方法を豊富に持つリーダーが必要となる。

アジャイルの本質

犬小屋を建てるときに設計書はいらないが、マンションを建てるには設計書がいる。アジャイル開発といっても、例えばマンションを設計図なしに建てるといったことを考えるとある程度は見通しや知見などを持つメンバーが方向性を決めていく必要がある。システム開発はその時その時の条件によっていい悪いの判断軸が変わる。さらに時間の経過でも判断軸が変化していくのである。

部分最適の罠

日本には「カイゼン」という高度経済成長期を支えた力強い言葉がある。しかし、時と状況によって判断軸が変わるソフトウェアという無形財産の前では、「善」に「改」めることができているのか、変化してしまう背景がある。職人気質である国民性も相まって、どうしても部分改善、部分最適を繰り返してしまうというプロジェクト現場が少なくない。

まとめ

システム運用や保守における部分最適は必ずしも全体最適になるわけではない。むしろ、この部分最適が全体を考えたときの労働生産性を下げていることすらある。小回りが利く人であればあるほど属人化してしまったりするため、誰が全体最適を見るのがベストなのか、改めて考える必要がある。

関連記事

IoT業務改善が進まない理由

IoT導入の落とし穴

製造業や物流業を中心に、IoTセンサーやデバイスの導入が加速している。設備の稼働状況、温度・湿度、位置情報など、あらゆるデータがリアルタイムで収集できる時代になった。しかし、IoTを導入したものの「期待した業務改善効果が得られない」という声が多く聞かれる。データは確かに取得できているのに、なぜ業務改善に結びつかないのか。この問題は多くの企業が直面している共通の課題である。

データの墓場化

IoTデバイスから送られてくるデータは、サーバーやクラウドに蓄積されていく。しかし、その膨大なデータを見ても「何をすればいいのか分からない」という状況に陥る企業が少なくない。ダッシュボードには数値やグラフが表示されているものの、それを見て具体的なアクションを起こせる人材がいない。結果として、高額な投資をしたIoTシステムが「データ収集マシン」で終わってしまい、経営層からは「費用対効果が見えない」と指摘される悪循環に陥る。

失敗の典型パターン

活用が進まない企業には明確な共通点がある。第一に「導入目的が曖昧」なケースだ。「とりあえずIoTを入れてみよう」という姿勢では、取得すべきデータの種類も不明確になる。第二に「データ分析のスキル不足」である。統計知識やデータ分析ツールの使い方を理解している人材がいなければ、データから意味のある洞察は得られない。第三に「業務プロセスとの連携不足」だ。データ分析の結果を実際の業務改善アクションに落とし込む仕組みがなければ、分析は絵に描いた餅で終わる。これらの問題は技術以前の、組織体制や戦略の問題なのである。

正しい活用ステップ

IoTを真に業務改善につなげるには、段階的なアプローチが必要だ。まず「解決したい課題」を明確にし、その課題解決に必要なデータだけを取得する設計から始める。次に、データを見える化するだけでなく、「どの数値がどうなったら、誰が何をするか」というアクションルールを事前に設定する。さらに、現場担当者がデータを日常的に確認し、判断できるよう、シンプルなダッシュボードと教育体制を整えることが重要だ。IoT活用は技術導入ではなく、業務プロセス改革として捉え、全社的な取り組みとして推進することで初めて成果が生まれる。

まとめ

IoTで業務改善が進まない企業の共通点は、データ収集が目的化し、活用のための戦略・スキル・体制が不足している点である。導入前の課題設定、データ分析人材の育成、業務プロセスへの組み込みという3つの要素を整えることで、IoTは真の業務改善ツールになる。技術導入だけでなく、組織全体での活用文化の醸成が成功の鍵である。

続きを見る >

従来開発 vs ローコード開発比較

基本概念

企業のデジタル化が加速する中、システム開発手法の選択は事業成功の鍵を握る重要な決断となっている。従来開発は、プログラマーがコードを一から書き上げる伝統的な手法で、高い技術力と豊富な経験が求められる。一方、ローコード開発は視覚的なインターフェースを活用し、最小限のコーディングでアプリケーションを構築する革新的なアプローチである。両者の特徴を正しく理解することで、プロジェクトに最適な選択が可能になる。

費用対効果

従来開発では高度なスキルを持つエンジニアの確保が必要で、人件費が開発コストの大部分を占める。特に大規模プロジェクトでは、設計から実装、テストまで長期間の人的リソースが必要となり、総コストは数千万円規模に達することも珍しくない。対してローコード開発は、専門知識が少ない人材でも短期間でアプリケーション構築が可能で、初期投資を大幅に削減できる。しかし、プラットフォームのライセンス費用や将来的なカスタマイズ制約を考慮すると、長期的なコスト効率は慎重に検討する必要がある。

開発速度

開発期間において両手法の差は歴然としている。従来開発では要件定義から本格運用まで数ヶ月から数年を要するケースが一般的で、複雑な機能実装には綿密な設計と段階的な開発が必要である。一方、ローコード開発は既存のテンプレートやコンポーネントを活用することで、数日から数週間での迅速なプロトタイプ作成が可能である。特にビジネスアプリケーションや内部管理システムでは、従来開発の10分の1以下の期間で実装できる場合もある。ただし、複雑なロジックや高度な機能が必要な場合は、結果的に従来開発と同等の期間を要することもあるため、プロジェクトの性質を見極めることが重要である。

品質と制約

システムの品質面では、それぞれ異なる特徴がある。従来開発は細部まで制御可能で、パフォーマンス最適化や独自機能の実装において高い品質を実現できる。セキュリティ要件が厳格なシステムや大量データ処理が必要な基幹システムでは、従来開発の柔軟性が威力を発揮する。ローコード開発は標準化されたコンポーネントを使用するため、一定の品質は保証されるが、プラットフォーム依存による制約がある。また、複雑な業務ロジックの実装や外部システムとの高度な連携において、期待する品質レベルに到達できない可能性もある。品質要件と開発リソースのバランスを慎重に評価することが成功の鍵となる。

まとめ

最適な開発手法の選択は、プロジェクトの目的、予算、期間、品質要件を総合的に評価して決定すべきである。ローコード開発は迅速性とコスト効率に優れ、内部業務システムや簡易的なWebアプリケーション開発に適している。従来開発は高い技術的要求や独自性が必要なシステムに最適である。重要なのは、どちらか一方に固執するのではなく、各プロジェクトの特性に応じて柔軟に選択することである。

続きを見る >

モックアップの料金

要件定義の意義

ユーザーの要件を明確にすることで、開発の方向性がブレず、無駄な修正や手戻りを防ぐことができる。定期的なミーティングやレビューセッションを通じて、開発者はユーザーのニーズを正確に把握し、ドキュメント化やモックアップ化することが重要である。

試作品の価値

SEはユーザーに具体的なイメージを持ってもらうために、プロトタイプやモックアップを作成し、ユーザーに確認してもらうことで、誤解や認識のズレを減らす。これにより、実装後の大幅な変更を回避できる。

モックアップの功罪

モックアップの作成は有料であることが多いようである。また、非エンジニアがシステム技術を意識しないモックアップであれば、その後の開発が複雑になってしまうといったことも考えられる。

ユーザー主導開発

モックアップを用いてユーザーがシステムの機能や開発プロセスについて理解を深めることで、適切なフィードバックを提供することが大切である。開発チームとのコミュニケーションも円滑になり、無駄な手戻りや修正を減少する。

まとめ

システム開発におけるユーザーと開発チームのコミュニケーション改善が、システム開発コストを軽減する。そのためには視覚的にコミュニケーションできるモックアップは重要であろう。

続きを見る >