効率化の誤解

目標設定の要諦

SESと呼ばれる派遣や準委任契約では、プロジェクトを完遂することが難しいとしている。これはゴールが未設定であったり、曖昧になってしまう場合が多くあるからである。ゴールの設定や未来像は非常に重要で、プロジェクトマネージャーなどリーダーが必ず持っておくべき指針である。

真のリーダー像

システム開発に参画するメンバーは一般的に経歴書やスキルシートによって決まる。プロジェクト経験数が多かったり、扱える言語が多かったりするだけでは、本当のスキルは推しはかれない。やはり、確認すべきは不測の事態が起きたときの対処方法を豊富に持つリーダーが必要となる。

アジャイルの本質

犬小屋を建てるときに設計書はいらないが、マンションを建てるには設計書がいる。アジャイル開発といっても、例えばマンションを設計図なしに建てるといったことを考えるとある程度は見通しや知見などを持つメンバーが方向性を決めていく必要がある。システム開発はその時その時の条件によっていい悪いの判断軸が変わる。さらに時間の経過でも判断軸が変化していくのである。

部分最適の罠

日本には「カイゼン」という高度経済成長期を支えた力強い言葉がある。しかし、時と状況によって判断軸が変わるソフトウェアという無形財産の前では、「善」に「改」めることができているのか、変化してしまう背景がある。職人気質である国民性も相まって、どうしても部分改善、部分最適を繰り返してしまうというプロジェクト現場が少なくない。

まとめ

システム運用や保守における部分最適は必ずしも全体最適になるわけではない。むしろ、この部分最適が全体を考えたときの労働生産性を下げていることすらある。小回りが利く人であればあるほど属人化してしまったりするため、誰が全体最適を見るのがベストなのか、改めて考える必要がある。

関連記事

AIで何ができるのか

AI vs 人間

AIは人間を超えるのか?などの質問をされることがよくある。シンギュラリティと呼ばれているが、超える超えないの単一線上で比較できるものではないと考える。たとえば、計算の速さだけでいうと人間よりも、はるかに早いと言える。

AI導入の両面性

とにかく労働人口の減少によって、機械化やAI化が急がれていると思う。すでに、画像作成や文章作成などは置き換わっている事例も多くみられるようになった。そんな中で、よくあるのが「AIで何かできませんか?」という問い合わせである。

AI時代のDX

DXという概念にも通ずる話だが、デジタル化するだけでは、いわゆるデジタル変革にはならない。ペーパーレス化ってやつだ。同じように、AIを使うことを目的としてしまうと業務に対して便益がない場合も多いようだ。したがって、AIを利用するということをDXと定義するのであれば、日常業務を整理して、どこをAIに任せるのかを検討することが大切である。

AI活用の極意

AIにも得手不得手があり、計算はもちろん得意だが、質問の仕方や指示の仕方で活用レベルは大きく変わる。プロンプトと呼ばれるものはコピーして使えるが、AIを活用しきろうとするならば、自分でプロンプトを考えれる必要がある。つまり、現時点では賢いAIなのではなく、使う側が上手に使わないとならない。

まとめ

AIの使いどころについて、多くは無理やり使おうとするため、AIを活用する場面でないことも多くある。また、ユーザー企業に関わらずシステム会社でもAIの活用は進んでおり、画像の生成やプログラミングの一部はすでに人間が行わなくてもよい段階にある。これから先もこれは加速することだろう。

続きを見る >

ノウハウはタダじゃない

IT導入の難しさ

IT導入では、どの程度のコストをかけるべきか、その費用がどのように効果を生むかの判断が難しい場面が多い。正解が存在しないため、常に試行錯誤が伴うのが実情である。導入後も改善や調整が続き、理想の形を追い求めて進化し続ける必要がある。これこそが、IT導入のハードルを高める最大の要因である。

「導入=完成」の落とし穴

「導入すれば終わり」と考えると、ITプロジェクトは失敗しやすくなる。IT導入には明確なゴールがないため、段階的なチェックポイントの設計が重要となる。導入途中で要件が変化することも少なくないが、それを「失敗」とみなすのではなく、「成功への第一歩」と捉えるべきである。柔軟な対応と継続的な見直しこそが、成果につながる道である。

見積もりが難しい理由

目に見えるモノを作る場合とは異なり、ITシステムの見積もりには高い不確実性が伴う。業務の関連性、将来的な拡張性、外部環境の変化など、検討すべき要素は無数に存在する。したがって、本格的なIT導入には、実際の開発にかかる時間の2倍ほどの準備期間を設ける覚悟が必要である。余裕を持つことが、後のトラブル回避にも直結する。

DXがカオスになる訳

システム構築やDXのプロジェクトは、時間の経過とともに当初の目的を見失いやすい。最初に定めた要件が現場の混乱の中で忘れ去られ、後から新たな要求が持ち込まれることで、プロジェクトが迷走していく。現場も対応に追われ、全体が混沌としていく。こうした事態を避けるには、目的の定期的な再確認と明確な進行管理が不可欠である。

まとめ

ITに苦手意識があるからといって「なんとかしてくれ」と丸投げする姿勢では、プロジェクトは成功しない。目的や進捗のチェックポイントといった、数値化できないノウハウの積み重ねこそが、成功への鍵となる。

続きを見る >

AIチャットボットの現実

チャットボット幻想と現実

人手不足や生産性向上が叫ばれる中、多くの企業で「問い合わせ業務の多くはAIチャットボットで代替できるのではないか」という期待が高まっている。確かに、人間と自然に会話できるAIの実現は、多くの技術者が長年抱き続けた夢でもあった。しかし、過去には言語理解や文脈の把握に技術的な限界があり、実用化には程遠いというのが現実だった。こうした期待と現実のギャップが、AIチャットボット導入の失敗要因となってきた。

チャットボットの進化

2000年代には、ルールベースやシナリオ型のチャットボットが登場し、定型的なカスタマーサポートなどで徐々に実用化され始めた。とはいえ、自然な対話というより「決められた会話」に近く、限定的な使い方にとどまっていた。ところが2020年代に入り、ディープラーニングの飛躍とともに自然言語処理の精度が格段に向上し、Google、Facebook、OpenAIといった技術企業が次々に大規模言語モデル(LLM)を発表したことで、チャットボットは“おしゃべりマシン”から会話パートナーへと進化した。

ChatGPTの衝撃

ChatGPTのような生成AIが登場し、誰でも使えるようになったことで、AIチャットボットの活用は一気に加速した。従来のようなFAQへの対応だけでなく、長文の文書作成や要約、翻訳、さらにはプログラミング支援など、より複雑で創造的な作業もこなせるようになっている。人間の知的作業領域に深く入り込み、単なる効率化ツールにとどまらない存在となった。もはや「使えるかどうか」ではなく「どう使うか」が問われるフェーズに突入している。

業界全体への波及

AIチャットボットの導入は、ビジネスだけでなく教育、医療、自治体など、多様な分野に広がっている。学生の学習サポートから医療問診の補助、行政窓口での自動対応まで、AIは生活の一部に組み込まれつつある。この変化は、かつてITインフラを支えてきた旧世代のエンジニア像を超える大転換だ。業務が高度化し、かつ柔軟性が求められる現代において、AIと協働する力が企業と個人の双方に求められている。

まとめ

AIチャットボットは、単なる業務効率化ではなく、人間の知的作業を補助する“共創”のパートナーである。ただし誤情報、倫理、プライバシーといった課題も存在する。こうした課題を踏まえ、社会全体でのルール整備と、使い方の成熟が必要だ。AI導入を成功させるには、「AIも使い様」という視点が欠かせない。ITの導入に乗り遅れてきた企業ほど、AI活用でも二の舞になりかねない。アタラキシアDXは、AI黎明期からの導入支援経験をもとに、技術とビジネスの橋渡しを支援している。

続きを見る >