効率化の誤解

目標設定の要諦

SESと呼ばれる派遣や準委任契約では、プロジェクトを完遂することが難しいとしている。これはゴールが未設定であったり、曖昧になってしまう場合が多くあるからである。ゴールの設定や未来像は非常に重要で、プロジェクトマネージャーなどリーダーが必ず持っておくべき指針である。

真のリーダー像

システム開発に参画するメンバーは一般的に経歴書やスキルシートによって決まる。プロジェクト経験数が多かったり、扱える言語が多かったりするだけでは、本当のスキルは推しはかれない。やはり、確認すべきは不測の事態が起きたときの対処方法を豊富に持つリーダーが必要となる。

アジャイルの本質

犬小屋を建てるときに設計書はいらないが、マンションを建てるには設計書がいる。アジャイル開発といっても、例えばマンションを設計図なしに建てるといったことを考えるとある程度は見通しや知見などを持つメンバーが方向性を決めていく必要がある。システム開発はその時その時の条件によっていい悪いの判断軸が変わる。さらに時間の経過でも判断軸が変化していくのである。

部分最適の罠

日本には「カイゼン」という高度経済成長期を支えた力強い言葉がある。しかし、時と状況によって判断軸が変わるソフトウェアという無形財産の前では、「善」に「改」めることができているのか、変化してしまう背景がある。職人気質である国民性も相まって、どうしても部分改善、部分最適を繰り返してしまうというプロジェクト現場が少なくない。

まとめ

システム運用や保守における部分最適は必ずしも全体最適になるわけではない。むしろ、この部分最適が全体を考えたときの労働生産性を下げていることすらある。小回りが利く人であればあるほど属人化してしまったりするため、誰が全体最適を見るのがベストなのか、改めて考える必要がある。

関連記事

リーダーの多忙による弊害

危険な繁忙化

なぜか忙しくしているPMやリーダーとなるSEがいれば危険信号である。リーダーが忙しくなると全体的な最適化や効率的な運用ができていない可能性がある。結果として、無駄に費用がかかったり、技術的負債が大きくなったりする。

役割分担の歪み

システムのユーザー側から見ると、SEという見え方しかしないと思われるが、実際はシステムの運用や開発には細かな作業分担が発生する。この作業分担ができていない場合は窓口のSEが余計な作業を行っている可能性がある。役割分担の不均衡がもたらす忙しさではなく、まったく仕事としてやらなくてもよいような事に時間を使っていて忙しい場合がある。

プロセスの確立

たとえば、プログラムが解析できる人をリーダーとしてしまうと、開発者に手取り足取り指示をしてしまうことがある。もし、リーダーがプログラムレビューなどの作業や、開発者にプログラム上の細かな指示をしている場合は注意が必要である。何を基準にプログラムレビューや指示を行うのか、という仕事を見える化し、仕組化することがリーダーの務めである。

俯瞰的視点

木を見て森を見ずという言葉があるように、リーダーとなる人は指針を作ったりメンバーをプロジェクト成功へ導く役割がある。リーダーが開発メンバーと同じように木ばかりを見ているようであれば、森を見る人が非エンジニアであるユーザー側となってしまうことが考えられる。

まとめ

誰が森を見るのか、リーダーやPMが常に忙しそうにしている場合は、何に時間を使っているのか調査する必要がある。実はここがボトルネックになっていてプロジェクトの進行が思うようにいかなかったり、頻繁にリスケが発生していることも多くある。しかし、これは本人にヒアリングするだけでは表面化しないため、ユーザー側の担当者やプログラマーなどの周辺人員から浮き彫りにすることが望ましい。

続きを見る >

ローコード開発とAI活用

AIとローコードの融合

ローコード開発プラットフォームの普及により、非エンジニアでもアプリケーション開発が可能になった現在、生成AIの活用が大きな注目を集めている。ChatGPTやCopilotなどのAIツールを組み合わせることで、開発スピードがさらに向上すると期待されているが、本当にすべてのローコード開発にAIが必要なのだろうか。コスト、品質、保守性など多角的な視点から、AI導入の真の価値を見極めることが、企業のDX戦略において極めて重要になっている。

コード生成の現実

生成AIによるコード生成は確かに魅力的だが、実際の品質には課題がある。AIが生成するコードは、単純な処理であれば高品質だが、複雑なビジネスロジックや例外処理が絡むと、不完全なコードが生成されることが少なくない。さらに深刻な問題は要件定義の壁である。AIは与えられたプロンプトに基づいてコードを生成するが、曖昧な要件や暗黙の前提条件を正確に理解することは困難である。結果として、開発者は生成されたコードを詳細に検証し、修正する必要があり、期待したほどの効率化が実現しないケースも多く見られる。

保守性のコスト

AIを活用したローコード開発において、最も見落とされがちなのが保守性の課題である。AI生成コードは、その時点では動作しても、後から読み解くことが困難な構造になっていることがある。変数名が不適切だったり、処理の意図が不明瞭だったりすると、半年後に修正が必要になった際、開発担当者が変わっていた場合、大きな手戻りが発生する。また、AIツールのバージョンアップや仕様変更により、過去に生成されたコードとの互換性が失われるリスクも存在する。初期開発のスピードを重視するあまり、長期的な運用コストが膨らんでしまっては本末転倒である。真のDX推進には、目先の効率化だけでなく、持続可能な開発体制の構築が不可欠なのである。

適切な見極め

ローコード開発におけるAI活用は、すべてのケースで必須というわけではない。定型的な画面開発や単純なCRUD操作など、パターン化された開発にはAIが有効だが、複雑なビジネスロジックや高度なセキュリティが要求される領域では、人間による丁寧な設計と実装が重要である。重要なのは、プロジェクトの性質、チームのスキルレベル、長期的な保守計画を考慮した上で、AIを活用すべき領域と従来手法を維持すべき領域を明確に区分することである。段階的にAIツールを導入し、効果を検証しながら適用範囲を拡大していく慎重なアプローチが、失敗リスクを最小限に抑え、真の生産性向上につながる。

まとめ

ローコード開発へのAI導入は、万能の解決策ではなく、適材適所で活用すべきツールである。コード生成の質、要件定義の難しさ、保守性の課題を十分に理解した上で、自社の開発体制に合った形でAIを取り入れることが成功の鍵となる。短期的な効率化だけでなく、長期的な運用まで見据えた戦略的な判断が求められている。

続きを見る >

Excel業務のDX化は本当に必要か

DX化の現状

多くの企業でExcel業務のDX化が話題になっている。「Excelは古い」「すぐにシステム化すべき」という声も聞かれるが、本当にすべてのExcel業務をDX化すべきなのだろうか。実は、やみくもなDX化は逆効果になることも少なくない。Excel業務のDX化には正しい順序と判断基準が必要である。本記事では、DX化の利点を理解しながら、適切なアプローチについて考えていく。

DX化の利点

Excel業務をDX化することで得られる利点は確かに多数ある。まず、データの一元管理により情報の正確性が向上し、複数人での同時編集や更新作業がスムーズになる。次に、自動化による作業時間の大幅な削減が可能である。手作業で行っていた集計や転記作業から解放されることで、より付加価値の高い業務に時間を使えるようになる。さらに、データ分析の高度化により、経営判断のスピードと精度が向上する。これらの利点は、企業の競争力強化に直結する重要な要素である。

DX化の落とし穴

しかし、DX化を急ぐあまり失敗するケースも多く見られる。業務フローが整理されていない状態でシステムを導入すると、非効率な業務がそのままシステム化されてしまう。また、現場の声を聞かずにツールを選定すると、使いにくいシステムが現場に定着せず、結局Excelに戻ってしまうこともある。さらに、すべてを一度に変えようとすると、従業員の負担が大きくなり、業務が混乱する。投資したコストに見合う効果が得られず、DX化自体が目的化してしまう危険性もある。適切な準備なしのDX化は、かえって生産性を下げる結果を招くのである。

正しい進め方

Excel業務のDX化を成功させるには、段階的なアプローチが不可欠である。まず、現状の業務フローを可視化し、本当に必要な作業とムダな作業を明確に区別する。次に、Excelで十分な業務と、システム化すべき業務を見極めることが重要である。すべてをシステム化する必要はない。その上で、優先順位をつけて小さく始め、効果を確認しながら展開していく。従業員のITリテラシーに応じた教育も並行して行うことで、スムーズな移行が実現する。DX化は手段であり目的ではない。自社の状況に合わせた最適な方法を選ぶことが、真の業務改善につながるのである。

まとめ

Excel業務のDX化は、正しく進めれば大きな効果をもたらすが、順序を誤ると逆効果になる。利点を理解しつつ、自社の状況を冷静に分析し、段階的に進めることが成功の鍵である。やみくもなシステム化ではなく、業務改善を第一に考えた戦略的なアプローチを取るべきである。

続きを見る >