QCDの死角

失敗の正体

システムの失敗は見えないことがある。ブラックボックスであるがゆえに隠せてしまうからである。失敗かどうかの線引きができないところがシステム構築プロジェクトの難しいところである。

エンジニアの真実

もしかしたら、エンジニアが都合の悪いことは隠していることがあるかもしれない。しかし、決めつけてしまうとエンジニアはへそを曲げてしまう可能性がある。隠しているつもりはなくても隠れていることもある。

成功の境界

失敗の線引きは、納期が遅れることであろうか。バグが多いということであろうか。実は、状況によって一概に言えないのである。QCDという言葉があるが、品質と費用と納期のバランスを上手にとったとしても成功か失敗か、すぐにはわからないのがシステムという無形物である。

コスパの本質

コスパという言葉があるが、かけるコストに対して、どれだけのパフォーマンスが出せるかが問題となる。システム開発では、コストからやりたいことを計算するのではなく、やりたいことを明確にしたうえで、コスト内でリッチ度合いを調節することが重要である。

まとめ

システム開発においては、失敗が見えにくいため、失敗しないように見えるのかもしれない。失敗しないことは、成功であるということでもない。時間が経つにつれて失敗を感じることもあり得るのである。

関連記事

ベトナムオフショア開発におけるブリッジエンジニアの重要性とその役割

オフショア開発の新たな展開とブリッジエンジニアの必要性

現在、日本企業がベトナムを含む海外の開発会社と協力してオフショア開発を行う流れが増えています。過去10年間で、ベトナム自体が珍しい存在ではなくなり、海外の開発会社がプロジェクトに参加するのは当たり前の状況となりました。 しかし、この状況下で単に「人件費の安いベトナム」に発注するというコストダウンの視点では、現在の状況には適していないのが実情です。 もしコストカットが目的であれば、システム開発ではなく、比較的単純で反復的な業務を対象とするBPOを検討すべきです。

言語と文化の壁を乗り越えるブリッジエンジニアの役割

それでは、BPOではないシステム開発においてはどのようなアプローチが求められるのでしょうか?その答えは、ブリッジエンジニアを用意することです。ブリッジエンジニアは、日本語とベトナム語の両方を使いこなせるソフトウェアエンジニアであり、コミュニケーターとも称されます。彼らは言葉の問題だけでなく、仕事のやり方や文化の違いによる課題をブリッジする必要があります。

例えば、日本のソフトウェア開発では受託開発が一般的であり、開発プロジェクトの進捗管理においては報連相が重視されます。また、ボトムアップ型のアプローチが好まれ、開発現場の個々の創意工夫や意見が重要視されます。しかし、ベトナムにおける受託開発は成果物の完成を約束する契約であり(日本の受託開発も契約上はこうなのですが)、成果物の進捗について日本の発注元から頻繁に報告を求められることに対してベトナムの開発者は反発を感じることがあります。また、指示命令がはっきりしているベトナムの組織では、開発現場において意見を求めつつも、その結果に責任を開発現場に求める日本のマネジメントスタイルは、無責任に映ることもあるかもしれません。

ブリッジエンジニアの役割とスキル要件

こうした課題を乗り越えるためには、ブリッジエンジニアの存在が不可欠です。彼らは単なる言語の通訳だけでなく、両国の開発文化の違いを理解し、適切なコミュニケーションを取る能力を持っています。ブリッジエンジニアは、日本のソフトウェア開発の特徴や要件を正確に把握し、ベトナムの開発者に伝えることで、円滑な連携を実現します。彼らは言葉や文化の壁を乗り越え、双方の開発チームを結びつけ、プロジェクトの成果を最大化する役割を果たすのです。

ブリッジエンジニアには、ソフトウェア開発の知識や技術力に加えて、優れたコミュニケーション能力や対人スキルが求められます。彼らは単に言葉を通訳するだけでなく、双方の文化や仕事のやり方を理解し、適切な形で情報を伝える必要があります。また、柔軟性と問題解決能力も重要です。彼らは状況に応じて適切な対応を取り、課題を解決するための努力を惜しまない必要があります。

結論

ベトナムオフショア開発において、ブリッジエンジニアは非常に重要な存在です。彼らの存在は単なるコストダウンだけでなく、効果的なシステム開発を実現するために不可欠です。ただし、ブリッジエンジニアの人件費は安くなく、市場には数が限られています。多くの日系開発企業が、優れたブリッジエンジニアを最重要の人的資源として確保しているためです。そのため、ベトナムオフショア開発は必ずしも安価ではありません。ブリッジエンジニアの重要性を理解し、適切な人材を配置することで、プロジェクトの成功につなげることが求められます。

続きを見る >

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >

DX前の業務整理

DX推進の落とし穴

多くの企業がDX推進を急ぐあまり、業務改善ツールやシステムの導入を最優先にしてしまう傾向がある。しかし、現状の業務プロセスを整理しないままツールを導入することは、非効率な作業をそのままデジタル化するだけに終わる危険性がある。DXの本質は単なるIT化ではなく、業務そのものの変革にある。

非効率のデジタル化の罠

いきなりツールを導入すると、既存の非効率な業務フローがそのままシステムに組み込まれてしまう。例えば、不要な承認プロセスや重複した作業がデジタル上で再現され、かえって業務が複雑化するケースも少なくない。また、現場の実態に合わないツールを選定してしまい、導入後に使われなくなるという失敗も頻発している。結果として、多大なコストと時間を費やしながら、期待した効果を得られないまま頓挫するプロジェクトが後を絶たない。

業務可視化から始めるDX

DXを成功させるためには、ツール導入の前に徹底した業務整理が不可欠である。まず、現在の業務フローを可視化し、各プロセスの目的と必要性を検証する。次に、重複作業や不要な承認ステップを洗い出し、業務そのものをシンプルにする。この段階で「なぜこの作業をしているのか」を問い直すことが重要である。形骸化したルールや慣習的に続けてきた作業を見直すことで、本当に必要な業務が明確になる。整理された業務プロセスに対して最適なツールを選定することで、初めてDXの効果を最大化できる。

業務整理の成果

業務整理を先行させることで、ツール導入の目的が明確になり、適切な選定が可能になる。整理された業務フローは現場の理解も得やすく、ツールの定着率も大幅に向上する。さらに、業務整理の過程で発見された課題は、DXだけでなく組織全体の改善にもつながる。属人化していた業務の標準化や、部門間の連携強化など、副次的な効果も期待できる。DXは一度きりのプロジェクトではなく、継続的な改善活動である。まず業務を整理し、その上でツールを活用するという順序を守ることが、持続可能なDX推進の鍵となる。

まとめ

DX成功の鍵は、ツール導入前の業務整理にある。非効率な業務をそのままデジタル化しても効果は得られない。まず業務フローを可視化し、不要なプロセスを排除してから最適なツールを選定することで、DXの本来の効果を発揮できる。

続きを見る >