QCDの死角

失敗の正体

システムの失敗は見えないことがある。ブラックボックスであるがゆえに隠せてしまうからである。失敗かどうかの線引きができないところがシステム構築プロジェクトの難しいところである。

エンジニアの真実

もしかしたら、エンジニアが都合の悪いことは隠していることがあるかもしれない。しかし、決めつけてしまうとエンジニアはへそを曲げてしまう可能性がある。隠しているつもりはなくても隠れていることもある。

成功の境界

失敗の線引きは、納期が遅れることであろうか。バグが多いということであろうか。実は、状況によって一概に言えないのである。QCDという言葉があるが、品質と費用と納期のバランスを上手にとったとしても成功か失敗か、すぐにはわからないのがシステムという無形物である。

コスパの本質

コスパという言葉があるが、かけるコストに対して、どれだけのパフォーマンスが出せるかが問題となる。システム開発では、コストからやりたいことを計算するのではなく、やりたいことを明確にしたうえで、コスト内でリッチ度合いを調節することが重要である。

まとめ

システム開発においては、失敗が見えにくいため、失敗しないように見えるのかもしれない。失敗しないことは、成功であるということでもない。時間が経つにつれて失敗を感じることもあり得るのである。

関連記事

DX抵抗の本質

「現状維持」の本音

DX推進の現場で最もよく聞かれる言葉が「今のままで十分回っている」という声である。しかし、この言葉の裏には単なる保守的な姿勢だけではない、切実な事情が隠れている。現場担当者にとって、新しいシステムの導入は「業務負担の増加」と「習熟までの不安」を意味する。日々の業務をこなしながら新しいツールを覚える余裕がない、というのが本音なのだ。この心理を理解せずにDXを押し進めても、形だけの導入に終わってしまう。

抵抗の3要因

現場のDX抵抗には、大きく3つの要因がある。1つ目は「自分の仕事がなくなるのでは」という雇用への不安である。効率化によって人員削減されるのではという恐れが、無意識の抵抗を生む。2つ目は「これまでのやり方を否定された」という感情的な反発である。長年培ってきた業務ノウハウを軽視されたように感じ、心理的な壁が生まれる。3つ目は「導入後のサポート体制への不信感」である。過去にシステム導入で混乱した経験があると、また同じことが起きるのではと警戒心が強まる。これらは論理ではなく感情の問題であり、丁寧な対話なしには解消できない。

現場を味方にする方法

現場の抵抗を協力に変えるには、戦略的なアプローチが必要である。まず「スモールスタート」で成功体験を積むことが重要だ。全社一斉導入ではなく、協力的な部署や担当者から小さく始め、目に見える成果を出すことで周囲の関心を引く。次に「現場キーマンの巻き込み」が効果的である。影響力のあるベテラン社員をプロジェクトメンバーに加え、当事者意識を持ってもらうことで、自然と周囲への波及効果が生まれる。そして最も大切なのが「目的の共有」である。DXは手段であり、目的は現場の負担軽減や働きやすさの向上であることを繰り返し伝える必要がある。「あなたの仕事を楽にするため」というメッセージが、抵抗感を和らげる鍵となる。

DX定着の共通点

DXに成功している企業には共通点がある。それは導入後も現場との対話を継続していることだ。システムを入れて終わりではなく、定期的なフィードバック収集と改善を繰り返すことで、現場の声がツールに反映される実感が生まれる。この「聞いてもらえている」という感覚が、次の変化への受容性を高めるのである。また、成功企業は小さな改善成果を積極的に社内共有している。「このツールで月5時間の作業が削減できた」といった具体的な数字は、懐疑的だった社員の心を動かす。DXは一度きりのプロジェクトではなく、現場と伴走し続ける長期的な取り組みであると理解することが、真の定着への第一歩である。

まとめ

現場のDX抵抗は、単なる保守性ではなく、不安や過去の経験に基づく合理的な反応である。この心理を理解し、スモールスタート、キーマンの巻き込み、目的の共有という3つのアプローチで丁寧に進めることが成功の鍵となる。DXは現場を敵に回すものではなく、現場を味方につけてこそ真の効果を発揮する。

続きを見る >

AIで何ができるのか

AI vs 人間

AIは人間を超えるのか?などの質問をされることがよくある。シンギュラリティと呼ばれているが、超える超えないの単一線上で比較できるものではないと考える。たとえば、計算の速さだけでいうと人間よりも、はるかに早いと言える。

AI導入の両面性

とにかく労働人口の減少によって、機械化やAI化が急がれていると思う。すでに、画像作成や文章作成などは置き換わっている事例も多くみられるようになった。そんな中で、よくあるのが「AIで何かできませんか?」という問い合わせである。

AI時代のDX

DXという概念にも通ずる話だが、デジタル化するだけでは、いわゆるデジタル変革にはならない。ペーパーレス化ってやつだ。同じように、AIを使うことを目的としてしまうと業務に対して便益がない場合も多いようだ。したがって、AIを利用するということをDXと定義するのであれば、日常業務を整理して、どこをAIに任せるのかを検討することが大切である。

AI活用の極意

AIにも得手不得手があり、計算はもちろん得意だが、質問の仕方や指示の仕方で活用レベルは大きく変わる。プロンプトと呼ばれるものはコピーして使えるが、AIを活用しきろうとするならば、自分でプロンプトを考えれる必要がある。つまり、現時点では賢いAIなのではなく、使う側が上手に使わないとならない。

まとめ

AIの使いどころについて、多くは無理やり使おうとするため、AIを活用する場面でないことも多くある。また、ユーザー企業に関わらずシステム会社でもAIの活用は進んでおり、画像の生成やプログラミングの一部はすでに人間が行わなくてもよい段階にある。これから先もこれは加速することだろう。

続きを見る >

思考と決断のPM力

PMの真価

スキルシート上にあるPMというのは、どういった開発言語や開発環境などを使ってきたかという内容であることが多く、SEの延長という意味合いが強く残っている。もし、期待するポジションが発想力や提案力にあるとすれば、姿勢をみることが大切となる。

従順の呪縛

就職氷河期と呼ばれる世代より上の年齢層では、常に従うことを幼少期から叩き込まれていると考えられる。日本では「禁止」か「許可」かを常に意識しながら仕事をしており、「許可されるまでは禁止されている」と考えているのではないかと推察される。

失敗からの成長

正しいか、間違っているか、の判断基準しか持ち合わせていない場合、何か問題が発生したときに時間を遡ってどこで判断を間違えたのかを追求する。それは大切なことであるが、実際のプロジェクトでは誤ったことを反省しつつ修正しながら進むことが大切である。

判断力の真髄

エンジニア出身のPM(開発プロジェクトのPM)だと、禁止か許可かというデジタルのような見方をしている人もいる。特に今日のシステムに関するプロジェクトでは、ゼロかイチだけでは判断できないような、ウエットでアナログな状況判断が必要となる。

まとめ

たとえ能力の高いPMだったとしても、仕事になると発想することや作ることの楽しみより、ミスによる懲罰を恐れたりするために、無難で当たり障りのない判断をしがちである。システムに関するプロジェクトがなかなか前へ進まない理由でもある。

続きを見る >