QCDの死角

失敗の正体

システムの失敗は見えないことがある。ブラックボックスであるがゆえに隠せてしまうからである。失敗かどうかの線引きができないところがシステム構築プロジェクトの難しいところである。

エンジニアの真実

もしかしたら、エンジニアが都合の悪いことは隠していることがあるかもしれない。しかし、決めつけてしまうとエンジニアはへそを曲げてしまう可能性がある。隠しているつもりはなくても隠れていることもある。

成功の境界

失敗の線引きは、納期が遅れることであろうか。バグが多いということであろうか。実は、状況によって一概に言えないのである。QCDという言葉があるが、品質と費用と納期のバランスを上手にとったとしても成功か失敗か、すぐにはわからないのがシステムという無形物である。

コスパの本質

コスパという言葉があるが、かけるコストに対して、どれだけのパフォーマンスが出せるかが問題となる。システム開発では、コストからやりたいことを計算するのではなく、やりたいことを明確にしたうえで、コスト内でリッチ度合いを調節することが重要である。

まとめ

システム開発においては、失敗が見えにくいため、失敗しないように見えるのかもしれない。失敗しないことは、成功であるということでもない。時間が経つにつれて失敗を感じることもあり得るのである。

関連記事

ローコードとは何か

ローコード開発の基本

ローコード開発とは、従来のプログラミングで必要だった複雑なコード記述を大幅に削減し、視覚的なインターフェースを使ってアプリケーションを構築する開発手法である。ドラッグ&ドロップや設定画面を使って、まるでパズルのピースを組み合わせるように機能を実装できる。これにより、プログラミング経験が少ない人でも短期間でアプリケーションを作成することが可能になった。従来なら数か月かかっていた開発が、数週間で完成することも珍しくない。

注目される背景

現代企業が直面するデジタル変革(DX)の波により、業務システムの迅速な構築・改善が求められている。しかし、IT人材不足は深刻化しており、従来の開発手法では変化の速いビジネス要求に対応しきれない。また、コロナ禍を経てリモートワークが普及し、業務プロセスのデジタル化が急務となった。こうした背景から、非IT部門でもシステム開発に参加できるローコード開発が注目を集めている。市民開発者と呼ばれる現場担当者が直接システムを構築することで、真にビジネスニーズに合致したソリューションを素早く提供できるのである。

具体的なメリット

ローコード開発の最大のメリットは開発スピードの圧倒的な向上である。従来の開発では要件定義から運用まで半年以上かかっていたプロジェクトが、1〜2か月で完成する。また、専門的なプログラマーを雇用する必要がないため、人件費を大幅に削減できる。さらに、ビジネス要求の変化に応じて素早く修正・拡張が可能で、従来のシステムのように大規模な改修を必要としない。ユーザー自身が開発に関わることで、仕様の齟齬が生じにくく、より実用的なシステムが構築できる点も大きな魅力である。運用保守も簡単で、長期的なTCO削減にも貢献する。

導入時の注意点

ローコード開発を成功させるには、適切な用途の見極めが重要である。単純な業務アプリケーションや社内システムには最適だが、高度な処理や複雑なアルゴリズムが必要なシステムには向かない。また、開発者のスキルレベルに応じた段階的な導入が必要で、いきなり複雑なシステムから始めると失敗リスクが高まる。セキュリティやガバナンスの観点から、適切な開発ルールやレビュープロセスの確立も欠かせない。さらに、従来のIT部門との連携体制を構築し、技術的なサポート体制を整えることで、より効果的なローコード活用が実現できる。

まとめ

ローコード開発は、DX推進において極めて有効な手段である。開発スピードの向上、コスト削減、そして現場主導でのシステム構築を可能にする。ただし、適切な用途選択と段階的な導入アプローチが成功の鍵となる。企業の競争力向上のため、ローコード活用を検討してみてはいかがだろうか。

続きを見る >

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >

ローコード開発≠安い

誤解されるコスト削減

実はローコード・ノーコードツールを使えば、開発が必要なくなるので安くなるというのは正しくない。たしかに、ノーコードツールを社内メンバーでCMSを使ってソフトを作るという場面は開発費用はかからない。

CMSとはコンテンツ・マネジメント・システムの略で、たとえばWebサイトのコンテンツを構成するテキストや画像、デザインなどを非エンジニアがプログラミングをせずに作成や管理できる仕組みのことである。ローコードツールはそれに加えて少しのプログラミング知識でシステムやツールを作成できることである。

開発手法の選択基準

断じてローコード開発だからといって安いわけではない。開発手法の特性による得手不得手を上手に使い分けるからトータルとして価格が安くなるということである。非エンジニア営業の金額調整という意味での判断でローコード開発を選択する場合は失敗することがある。

システム導入の本質理解

ローコード開発でも、システム導入の目的や条件が本質的にわかっていなければ、仕様要件のブレによって結果としてトータルが安くなることはない。これはローコード開発ということが問題なのではなく、フルスクラッチ開発であっても、SaaSと利用する場合であっても同じことが言える。

負債の危険

本来ローコード開発が適さない場合にも関わらず無理やりに合わせることで、プログラム部分の複雑性が増し、技術的負債となって大きな問題になっていく。結果として安くはならず、ローコード開発のメリットであるメンテナンス性までも損なうため、トータルで考えると高くなる。

まとめ

お客様の予算内で考えないといけないので、といった口癖があれば注意が必要である。クライアントの言いなり状態であれば、無理な要求は開発における仕様だけではないだろう。金額を含めた総合的な判断ができる人が、結果としてローコード開発を選択するわけである。

続きを見る >