QCDの死角

失敗の正体

システムの失敗は見えないことがある。ブラックボックスであるがゆえに隠せてしまうからである。失敗かどうかの線引きができないところがシステム構築プロジェクトの難しいところである。

エンジニアの真実

もしかしたら、エンジニアが都合の悪いことは隠していることがあるかもしれない。しかし、決めつけてしまうとエンジニアはへそを曲げてしまう可能性がある。隠しているつもりはなくても隠れていることもある。

成功の境界

失敗の線引きは、納期が遅れることであろうか。バグが多いということであろうか。実は、状況によって一概に言えないのである。QCDという言葉があるが、品質と費用と納期のバランスを上手にとったとしても成功か失敗か、すぐにはわからないのがシステムという無形物である。

コスパの本質

コスパという言葉があるが、かけるコストに対して、どれだけのパフォーマンスが出せるかが問題となる。システム開発では、コストからやりたいことを計算するのではなく、やりたいことを明確にしたうえで、コスト内でリッチ度合いを調節することが重要である。

まとめ

システム開発においては、失敗が見えにくいため、失敗しないように見えるのかもしれない。失敗しないことは、成功であるということでもない。時間が経つにつれて失敗を感じることもあり得るのである。

関連記事

ローコード開発とAI活用

AIとローコードの融合

ローコード開発プラットフォームの普及により、非エンジニアでもアプリケーション開発が可能になった現在、生成AIの活用が大きな注目を集めている。ChatGPTやCopilotなどのAIツールを組み合わせることで、開発スピードがさらに向上すると期待されているが、本当にすべてのローコード開発にAIが必要なのだろうか。コスト、品質、保守性など多角的な視点から、AI導入の真の価値を見極めることが、企業のDX戦略において極めて重要になっている。

コード生成の現実

生成AIによるコード生成は確かに魅力的だが、実際の品質には課題がある。AIが生成するコードは、単純な処理であれば高品質だが、複雑なビジネスロジックや例外処理が絡むと、不完全なコードが生成されることが少なくない。さらに深刻な問題は要件定義の壁である。AIは与えられたプロンプトに基づいてコードを生成するが、曖昧な要件や暗黙の前提条件を正確に理解することは困難である。結果として、開発者は生成されたコードを詳細に検証し、修正する必要があり、期待したほどの効率化が実現しないケースも多く見られる。

保守性のコスト

AIを活用したローコード開発において、最も見落とされがちなのが保守性の課題である。AI生成コードは、その時点では動作しても、後から読み解くことが困難な構造になっていることがある。変数名が不適切だったり、処理の意図が不明瞭だったりすると、半年後に修正が必要になった際、開発担当者が変わっていた場合、大きな手戻りが発生する。また、AIツールのバージョンアップや仕様変更により、過去に生成されたコードとの互換性が失われるリスクも存在する。初期開発のスピードを重視するあまり、長期的な運用コストが膨らんでしまっては本末転倒である。真のDX推進には、目先の効率化だけでなく、持続可能な開発体制の構築が不可欠なのである。

適切な見極め

ローコード開発におけるAI活用は、すべてのケースで必須というわけではない。定型的な画面開発や単純なCRUD操作など、パターン化された開発にはAIが有効だが、複雑なビジネスロジックや高度なセキュリティが要求される領域では、人間による丁寧な設計と実装が重要である。重要なのは、プロジェクトの性質、チームのスキルレベル、長期的な保守計画を考慮した上で、AIを活用すべき領域と従来手法を維持すべき領域を明確に区分することである。段階的にAIツールを導入し、効果を検証しながら適用範囲を拡大していく慎重なアプローチが、失敗リスクを最小限に抑え、真の生産性向上につながる。

まとめ

ローコード開発へのAI導入は、万能の解決策ではなく、適材適所で活用すべきツールである。コード生成の質、要件定義の難しさ、保守性の課題を十分に理解した上で、自社の開発体制に合った形でAIを取り入れることが成功の鍵となる。短期的な効率化だけでなく、長期的な運用まで見据えた戦略的な判断が求められている。

続きを見る >

効率化の誤解

目標設定の要諦

SESと呼ばれる派遣や準委任契約では、プロジェクトを完遂することが難しいとしている。これはゴールが未設定であったり、曖昧になってしまう場合が多くあるからである。ゴールの設定や未来像は非常に重要で、プロジェクトマネージャーなどリーダーが必ず持っておくべき指針である。

真のリーダー像

システム開発に参画するメンバーは一般的に経歴書やスキルシートによって決まる。プロジェクト経験数が多かったり、扱える言語が多かったりするだけでは、本当のスキルは推しはかれない。やはり、確認すべきは不測の事態が起きたときの対処方法を豊富に持つリーダーが必要となる。

アジャイルの本質

犬小屋を建てるときに設計書はいらないが、マンションを建てるには設計書がいる。アジャイル開発といっても、例えばマンションを設計図なしに建てるといったことを考えるとある程度は見通しや知見などを持つメンバーが方向性を決めていく必要がある。システム開発はその時その時の条件によっていい悪いの判断軸が変わる。さらに時間の経過でも判断軸が変化していくのである。

部分最適の罠

日本には「カイゼン」という高度経済成長期を支えた力強い言葉がある。しかし、時と状況によって判断軸が変わるソフトウェアという無形財産の前では、「善」に「改」めることができているのか、変化してしまう背景がある。職人気質である国民性も相まって、どうしても部分改善、部分最適を繰り返してしまうというプロジェクト現場が少なくない。

まとめ

システム運用や保守における部分最適は必ずしも全体最適になるわけではない。むしろ、この部分最適が全体を考えたときの労働生産性を下げていることすらある。小回りが利く人であればあるほど属人化してしまったりするため、誰が全体最適を見るのがベストなのか、改めて考える必要がある。

続きを見る >

AIで何ができるのか

AI vs 人間

AIは人間を超えるのか?などの質問をされることがよくある。シンギュラリティと呼ばれているが、超える超えないの単一線上で比較できるものではないと考える。たとえば、計算の速さだけでいうと人間よりも、はるかに早いと言える。

AI導入の両面性

とにかく労働人口の減少によって、機械化やAI化が急がれていると思う。すでに、画像作成や文章作成などは置き換わっている事例も多くみられるようになった。そんな中で、よくあるのが「AIで何かできませんか?」という問い合わせである。

AI時代のDX

DXという概念にも通ずる話だが、デジタル化するだけでは、いわゆるデジタル変革にはならない。ペーパーレス化ってやつだ。同じように、AIを使うことを目的としてしまうと業務に対して便益がない場合も多いようだ。したがって、AIを利用するということをDXと定義するのであれば、日常業務を整理して、どこをAIに任せるのかを検討することが大切である。

AI活用の極意

AIにも得手不得手があり、計算はもちろん得意だが、質問の仕方や指示の仕方で活用レベルは大きく変わる。プロンプトと呼ばれるものはコピーして使えるが、AIを活用しきろうとするならば、自分でプロンプトを考えれる必要がある。つまり、現時点では賢いAIなのではなく、使う側が上手に使わないとならない。

まとめ

AIの使いどころについて、多くは無理やり使おうとするため、AIを活用する場面でないことも多くある。また、ユーザー企業に関わらずシステム会社でもAIの活用は進んでおり、画像の生成やプログラミングの一部はすでに人間が行わなくてもよい段階にある。これから先もこれは加速することだろう。

続きを見る >