QCDの死角

失敗の正体

システムの失敗は見えないことがある。ブラックボックスであるがゆえに隠せてしまうからである。失敗かどうかの線引きができないところがシステム構築プロジェクトの難しいところである。

エンジニアの真実

もしかしたら、エンジニアが都合の悪いことは隠していることがあるかもしれない。しかし、決めつけてしまうとエンジニアはへそを曲げてしまう可能性がある。隠しているつもりはなくても隠れていることもある。

成功の境界

失敗の線引きは、納期が遅れることであろうか。バグが多いということであろうか。実は、状況によって一概に言えないのである。QCDという言葉があるが、品質と費用と納期のバランスを上手にとったとしても成功か失敗か、すぐにはわからないのがシステムという無形物である。

コスパの本質

コスパという言葉があるが、かけるコストに対して、どれだけのパフォーマンスが出せるかが問題となる。システム開発では、コストからやりたいことを計算するのではなく、やりたいことを明確にしたうえで、コスト内でリッチ度合いを調節することが重要である。

まとめ

システム開発においては、失敗が見えにくいため、失敗しないように見えるのかもしれない。失敗しないことは、成功であるということでもない。時間が経つにつれて失敗を感じることもあり得るのである。

関連記事

開発の相場

相場の不在

フルスクラッチでのシステム開発に相場はない。相場とは商品が一般的に流通している商品など数が多い場合は、競争原理も働き、金額がある一定の範囲に収まってくるものである。

建築との差異

たとえば、一戸建て建築であれば、建物の規模と資材、それに加えて職人の人工で金額が決まる。フルスクラッチのシステム開発は、つまり極めて特殊な特注品を作るようなものであるため、システム開発に相場という概念が基本的にはないのである。

人件費の実態

システム(ソフトウェア)は一戸建てのように、基本的には材料費はかからない。システム開発の費用のほとんどは人件費である。大工職人の人工と同じように人月単価と呼ばれるSE1人が1ヶ月働く金額で相場を知ることができるのである。

工期の変動

建物を建てることと比べるとシステムやソフトウェアは無形の物となるため、1ヶ月の労働力を推し量ることは困難である。個人のプログラミングの早さによって、納期が早くなったり遅くなったりするのである。

まとめ

SEは過去のプロジェクト参画実績から、同じようなプロジェクトに何度も参画していれば手練れでスキルが高いと評価される。システムに関わる人材の評価が困難な点は、プロジェクトに参画する経験値と、本当の意味でのスキルが比例するわけではないことである。本当の意味でのスキルとはプロジェクトを成功させられるかどうかを指すのである。

続きを見る >

生成AI失敗の3要因

期待と現実の乖離

生成AIを導入したものの、思うような成果が出ずに悩む企業が増えている。「話題だから」「競合が使っているから」という理由で導入したケースでは、現場から「結局使えない」という声が上がることも珍しくない。実は、生成AIで成果が出ない原因の多くは、ツール自体の問題ではなく、導入プロセスや運用体制に潜んでいる。本記事では、成果が出ない3つの主要因を解説する。

曖昧なゴール設定

成果が出ない最大の原因は、導入目的が不明確なことである。「業務効率化」という漠然とした目標では、具体的に何を効率化するのか、どの程度の改善を目指すのかが見えない。結果として、現場は何にAIを使えばいいかわからず、試しに使ってみても効果を実感できないまま放置される。成功している企業は「議事録作成時間を50%削減」「問い合わせ対応の一次回答を自動化」など、測定可能な目標を設定している。目的が明確であれば、適切なツール選定も、効果測定も、改善サイクルも回しやすくなる。

教育不足の弊害

二つ目の原因は、従業員への教育不足である。生成AIは万能ではなく、適切なプロンプト設計や出力結果の検証スキルが求められる。しかし多くの企業では「ツールを入れれば自然と使われる」と考え、十分な研修を実施していない。その結果、一度試して期待外れの回答が返ってきた社員は「使えない」と判断し、二度と触らなくなる。三つ目の原因は、業務との不適合である。定型的な作業や創造的な文章生成には強みを発揮するが、高度な専門判断や最新情報が必要な業務には向かない。自社の業務特性を分析せずに導入すると、AIの強みを活かせない領域で無理に使おうとして失敗する。

成功の3条件

生成AIで成果を出すためには、三つのポイントを押さえる必要がある。第一に、具体的で測定可能な導入目的を設定すること。第二に、継続的な教育プログラムを通じて社員のAIリテラシーを高めること。第三に、自社業務を棚卸しし、AIが得意な領域と苦手な領域を見極めたうえで適用範囲を決めることである。これらは当たり前のように聞こえるが、実際に徹底できている企業は少数派だ。逆に言えば、この基本を押さえるだけで、競合との差別化が可能になる。生成AIは正しく活用すれば強力な武器となるが、準備なき導入は失敗の元である。

まとめ

生成AIで成果が出ない原因は、目的の不明確さ、教育不足、業務との不適合の三点に集約される。これらはいずれもツール導入前の準備段階で解決できる課題だ。成功の鍵は、明確な目標設定、継続的な人材育成、そして業務特性に応じた適切な活用領域の選定にある。基本を徹底することが、AI活用の成否を分けるのである。

続きを見る >

DXの始め方

DX着手の課題

「DXを進めたいが、何から手をつければいいかわからない」。多くの中小企業がこの悩みを抱えている。実際、DXに取り組みたいと考えながらも着手できていない企業は約7割にも上るというデータがある。人材不足、予算の制約、そして「失敗したくない」という不安が足かせとなり、一歩を踏み出せずにいるのだ。DX成功の鍵は、最初の一歩をどこから始めるかにかかっている。

優先順位の決定法

DXの第一歩は「業務の棚卸し」から始まる。まず自社のすべての業務を書き出し、どこに無駄や非効率があるかを可視化する。次に、各業務について「改善効果の大きさ」と「導入の難易度」の2軸で評価する。効果が大きく難易度が低い業務こそ、最優先で取り組むべき領域である。たとえば、紙ベースの勤怠管理、手作業での請求書発行、属人化した顧客情報管理などは、比較的着手しやすく効果も実感しやすい分野といえる。重要なのは経営課題と紐づけて考えること。売上向上なのか、コスト削減なのか、目的を明確にすることで優先順位が定まる。

スモールスタートの原則

DX推進で最も重要な考え方が「スモールスタート」である。いきなり全社的な大規模システムを導入しようとすると、多大なコストと時間がかかり、途中で頓挫するリスクが高まる。まずは1つの部署、1つの業務から小さく始めるべきだ。たとえば、営業部門の顧客管理をクラウド化する、経理部門の請求書をデジタル化するといった身近なところからで十分である。小さな成功体験を積み重ねることで、社員のDXへの理解と協力が得られやすくなる。ある建設会社では、現場写真の共有をクラウド化しただけで、1日あたり1時間以上の工数削減に成功した。「まずやってみる」という姿勢が、DX成功への近道なのである。

経営者主導の重要性

DXを成功させるには、経営者自身が旗振り役となることが不可欠である。「現場任せ」「担当者任せ」では、部門間の壁や既存業務への抵抗に阻まれ、改革は頓挫してしまう。経営者がDXの目的とビジョンを社内に発信し続けることで、組織全体の意識が変わる。また、導入後の定着も見据えた計画が重要だ。新しいツールを入れただけでは、誰も使わなくなってしまう事例は少なくない。操作研修の実施、マニュアルの整備、成功事例の社内共有など、継続的なフォロー体制を構築すべきである。DXは一度きりのプロジェクトではなく、継続的な改善活動だ。PDCAを回しながら少しずつ変革を広げていく姿勢が求められる。

まとめ

DXは「どこから始めるか」で成否が分かれる。業務の棚卸しで課題を可視化し、効果と難易度から優先順位を決め、スモールスタートで成功体験を積む。この流れを意識することが重要である。経営者が主導し、全社一丸となって取り組むことで、着実にDXは前進する。最初の一歩を踏み出すことが、企業変革への大きな第一歩となるのだ。

続きを見る >