技術的負債の返済方法

負債の本質

技術的負債には、設計負債やコード負債がある。金銭的な負債であれば借入金やマイナスの表記で数字化できるのだが、技術的負債においては数字化できないことがとても難しい点である。経営に関するほとんどのことは定量化や定性化が可能だが、たとえば企業創業者の発想する「野生の勘」を直接的に数字化できないように技術的負債も一筋縄では見える化しない。

設計時の対策

技術的負債の中でもコード負債については、システム開発の現場からよく発想されるリファクタリングや再構築などを行うことで比較的わかりやすい返済方法となる。知らない人が作ったプログラムや古くなったプログラムのバージョンなど、リスクを表現し対応することができる。何よりも最初の企画設計段階で負債が積みあがりにくい仕組みを考えることが大切である。

高負担な設計

技術的負債の中でも利息の高い負債が設計負債である。単体機能における設計であれば、モジュールごとの再設計によって返済が可能である。しかし、プログラムは複数のモジュールが絡まり合っていることがほとんどなので、複雑なオペになってしまう。また、稼働中のシステムにわざわざ再設計したプログラムを導入するリスクに対して、得れるメリットも少ないので見過ごされがちである。設計能力は例えば、紙というオブジェクトのメソッド(振る舞い)とプロパティ(保持する情報)を聞いて正しい答えが帰ってくれば多少安心であろう。紙の振る舞いは燃えるであり保持する情報は面積などがある。

根本的解決

しかし、技術的負債はこのように目に見えやすい設計負債やコード負債が致命的になることは少なく、やはりその上層でどのような指針に基づいてシステム運用がなされてきたか、また長期視点で一貫したメンテナンスを行うことが必要である。システムの維持には保守費用や運用費用を払っていることが多いと思うが、これだけでは将来の負債を減らしていくことはできない。やはり、鳥の目を持つITコンサルタントやITアナリストなどの役割を持つメンバーが必要である。

まとめ

ITコンサルタントやアナリストは、すぐに利益も生まない、経費を削減するわけでもないといったコストセンターとしてのポジションなので、あまり起用していない中小企業も多いようである。投資に対する効果が見えにくいのは、料理でいう香辛料と同じなのかもしれない。その少しの投資が未来を大きく変えることになる。IT技術は日進月歩で発展するからである。

関連記事

要件定義の問題点

はじめに

会社の雰囲気や要件定義の内容をみれば、おおよそそのプロジェクトが成功するか否かがわかる。うまくいかない場合のユーザー側とシステム会社側の原因の一例である。

・要件定義をシステム会社に任せてしまう
・元請けシステム会社が無理な要件でも受注する
・準委任契約の人材紹介会社がリスクなく利鞘を稼げる
・末端エンジニアの作業遂行以外の責任
・ユーザー側、発注側の担当者が保身する

今回はその背景を説明したい。

要件定義の丸投げ

要件定義をシステム会社に任せてしまう。
要件定義はシステム会社がユーザー企業をヒアリングして作るものではなく、ユーザーとシステム会社が議論を重ねることで答えを出していくものにしなくてはならない。ユーザーが目指すべき姿と、システム会社が実現すべき姿のすり合わせが重要である。

無理な受注

元請けシステム会社が無理な要件でも受注する。
無理な要件でも受注できるのは、発注側にもシステムの知識がないため、ゴールが曖昧なまま元請けシステム会社が請け負ってしまうからである。もし、発注側にITリテラシーがなければ、パワハラなども発生する可能性が高い。したがって、元請けシステム会社に精神的な課題を回避するため、要件定義を作る人でさえも二次受けシステム会社から集めてくることがある。

人材紹介会社の利益構造

準委任契約の人材紹介会社がリスクなく利鞘を稼げる。
システムの完成責任は負わず、作業だけ請け負うことになるため、人さえ集めてくれば、そこでリスクなく利鞘が稼げる。発注側のユーザー企業からすれば、契約は元請けシステム会社であるため、3次請け、4次請けを使おうが、完成さえすればいいと考えていることが多い。

エンジニアの責任範囲

末端エンジニアの作業遂行以外の責任。
末端のエンジニアには、クライアントとの調整や導入、一定品質や納期の遵守など、責任感や危機感がないこともある。プロジェクトの全貌が見えないことも原因である。また、言われたことをやるだけで報酬がそこそこあるのが、システムエンジニアの業界だったりするので、作業をした時間分だけ報酬を支払ってほしい、という話にもなる。

発注側の保身

ユーザー側、発注側の担当者が保身する。
システム開発がうまくいかなかったときに、発注側の担当者がシステム会社に責任を押し付けるといったことがある。これは信頼関係によるもので、共同でプロジェクトを成功させようという目標が作れなかった場合に発生する。システム会社を業者扱いして要件定義を丸投げしてしまわないようにしなければならない。

続きを見る >

ベトナムオフショア開発におけるブリッジエンジニアの重要性とその役割

オフショア開発の新たな展開とブリッジエンジニアの必要性

現在、日本企業がベトナムを含む海外の開発会社と協力してオフショア開発を行う流れが増えています。過去10年間で、ベトナム自体が珍しい存在ではなくなり、海外の開発会社がプロジェクトに参加するのは当たり前の状況となりました。 しかし、この状況下で単に「人件費の安いベトナム」に発注するというコストダウンの視点では、現在の状況には適していないのが実情です。 もしコストカットが目的であれば、システム開発ではなく、比較的単純で反復的な業務を対象とするBPOを検討すべきです。

言語と文化の壁を乗り越えるブリッジエンジニアの役割

それでは、BPOではないシステム開発においてはどのようなアプローチが求められるのでしょうか?その答えは、ブリッジエンジニアを用意することです。ブリッジエンジニアは、日本語とベトナム語の両方を使いこなせるソフトウェアエンジニアであり、コミュニケーターとも称されます。彼らは言葉の問題だけでなく、仕事のやり方や文化の違いによる課題をブリッジする必要があります。

例えば、日本のソフトウェア開発では受託開発が一般的であり、開発プロジェクトの進捗管理においては報連相が重視されます。また、ボトムアップ型のアプローチが好まれ、開発現場の個々の創意工夫や意見が重要視されます。しかし、ベトナムにおける受託開発は成果物の完成を約束する契約であり(日本の受託開発も契約上はこうなのですが)、成果物の進捗について日本の発注元から頻繁に報告を求められることに対してベトナムの開発者は反発を感じることがあります。また、指示命令がはっきりしているベトナムの組織では、開発現場において意見を求めつつも、その結果に責任を開発現場に求める日本のマネジメントスタイルは、無責任に映ることもあるかもしれません。

ブリッジエンジニアの役割とスキル要件

こうした課題を乗り越えるためには、ブリッジエンジニアの存在が不可欠です。彼らは単なる言語の通訳だけでなく、両国の開発文化の違いを理解し、適切なコミュニケーションを取る能力を持っています。ブリッジエンジニアは、日本のソフトウェア開発の特徴や要件を正確に把握し、ベトナムの開発者に伝えることで、円滑な連携を実現します。彼らは言葉や文化の壁を乗り越え、双方の開発チームを結びつけ、プロジェクトの成果を最大化する役割を果たすのです。

ブリッジエンジニアには、ソフトウェア開発の知識や技術力に加えて、優れたコミュニケーション能力や対人スキルが求められます。彼らは単に言葉を通訳するだけでなく、双方の文化や仕事のやり方を理解し、適切な形で情報を伝える必要があります。また、柔軟性と問題解決能力も重要です。彼らは状況に応じて適切な対応を取り、課題を解決するための努力を惜しまない必要があります。

結論

ベトナムオフショア開発において、ブリッジエンジニアは非常に重要な存在です。彼らの存在は単なるコストダウンだけでなく、効果的なシステム開発を実現するために不可欠です。ただし、ブリッジエンジニアの人件費は安くなく、市場には数が限られています。多くの日系開発企業が、優れたブリッジエンジニアを最重要の人的資源として確保しているためです。そのため、ベトナムオフショア開発は必ずしも安価ではありません。ブリッジエンジニアの重要性を理解し、適切な人材を配置することで、プロジェクトの成功につなげることが求められます。

続きを見る >

生成AIは使えない?

思い通りにならない理由

生成AIを導入したのに思ったような結果が得られない――そんな経験をしたことがある人も多いだろう。AIは進化を続けているが、それを使いこなす側にも試行錯誤が求められている。特に企業においては、社内情報を整理すればするほど目的の答えに辿り着けなくなる「RAGの沼」にハマることがある。多くの企業が生成AIを武器にしようとしているが、その真価を引き出すには、正しい導入と運用が欠かせない。

RAGとは何か

RAG(Retrieval-Augmented Generation)は、「検索」「拡張」「生成」の頭文字を取った技術であり、生成AIに独自情報を与えることで回答の精度を上げる手法である。インターネット上の情報だけでなく、社内マニュアルや業務データなどを取り込むことで、より業務に即した回答が可能になる。ただし、期待する結果が得られない場合、その原因は提供リソースの質や構造にある可能性が高い。

ChatGPT以外の選択肢

現在、生成AIとして多くの大規模言語モデル(LLM)が存在する。OpenAIのChatGPTをはじめ、AnthropicのClaude、GoogleのGemini、MetaのLLaMA、Mistral、Cohere、さらにAlibabaやBaiduといった中国系ベンダーもある。それぞれに強みがあり、RAGに適したモデルも存在する。たとえばCohereのCommand R+やMistralのMixtralなどが代表的だ。目的に応じてLLMを選び、最適な環境を整えることが重要である。

社内AIを成功させるには

セキュリティ上の理由から、社内情報をインターネットに出せない企業も少なくない。その場合、オンプレミス環境(社内ローカル)に生成AIを構築する選択肢がある。たとえばTinyLLaMAやPhi-2のような軽量モデルから、Nous HermesやMixtralなどの対話・RAG対応モデルまで選択肢は豊富だ。これらを活用すれば、外部にデータを出さずともAIの恩恵を享受できる。必要なのは、自社の目的と環境に適した判断力である。

まとめ

生成AIはあくまで「道具」にすぎない。導入しただけで目的が自動的に達成されるわけではない。課題を定義し、適切な情報を整備し、それを使いこなす力が必要だ。RAGがうまくいかないと感じたら、その原因はリソースや設計のミスマッチにあるかもしれない。

続きを見る >