開発費用値下げの危険性

開発手法の選択基準

大がかりなシステム開発においては、ウォーターフォールモデルという開発手法がとられ、設計書などのドキュメント類も整理してから、プログラミングへ着手する。逆に中小規模なシステム開発においては、アジャイル開発と呼ばれ、プログラミングをしながらシステム開発が進められたり、ドキュメント類は簡易にして、プログラミング工程へ着手するといった方法がとられる。状況に応じて開発手法は使い分ける必要がある。

設計書の必要と課題

建築では図面なく建物を建てることはないが、中小規模のシステムについては簡単な概要だけでシステムの開発ができてしまう。もちろん設計書をしっかりと書いて、要件を詰めてシステム開発を進めることができれば、トラブルもなくていいのではないかと言われる。しかし、設計書を作成するにはシステムをプログラミングすることと同じくらい費用が掛かる。

設計書の粒度と要因

中小規模のシステム開発において設計書が簡易になってしまう理由は、ユーザー側や発注側の予算が乏しいという理由がある。建築のパターンの場合は、法律によって作成しなければならない図面や、施主から同意をもらうべき書類などが決められている。システム開発には法的に作成しなければならない書類が明確にされているわけではないため、この粒度が各社・各エンジニアによりバラツキが発生する。

文書管理の現状

中小規模のシステム開発において、最悪の場合は設計書がないケースもある。小さなプロジェクトの場合は予算も少なく特にドキュメント類がないが多くある。あるいは、システムはアップデートされ続けているのにドキュメントはアップデートされていなかったり、ひどい場合にはシステム保守ベンダーが紛失している場合もある。

まとめ

システム開発に時間がかかる理由は、設計書から作成することでプログラミング作業の2倍以上の時間がかかると言われる。いわゆる動作検証の工程まで入れるとプログラミング作業の3倍程度は時間がかかる。また、システム開発はほとんどが人件費である場合が多く、かかる時間に応じて費用が上がる。つまり、非エンジニアが単純に開発費用を値切ると、プログラミング以外の重要な情報を削っていくことになる。

関連記事

中小企業のAI活用入門

AI導入の選択肢

近年、AI技術の急速な進化により、大企業だけでなく中小企業にもAI活用の波が押し寄せている。しかし、多くの中小企業経営者は「AIは難しそう」「コストが高い」「専門人材がいない」といった不安を抱えている。実は、現在のAIツールは以前より格段に使いやすく、低コストで導入できるものが増えている。ChatGPTやClaude等の対話型AIから、画像認識、音声認識まで、業務に合わせて選べる選択肢が豊富にある。重要なのは、完璧を求めず、まず小さく始めることだ。

業務効率化の手法

AI活用で最も効果が出やすいのは、定型業務の自動化である。例えば、顧客からの問い合わせ対応にチャットボットを導入すれば、24時間365日の対応が可能になり、スタッフは付加価値の高い業務に集中できる。また、請求書処理や在庫管理にAI-OCRを活用すれば、手入力の時間を大幅に削減できる。ある製造業の中小企業では、品質検査にAI画像認識を導入し、検査時間を70%短縮した。別の小売業では、需要予測AIで在庫の最適化を実現し、廃棄ロスを30%削減した。これらの事例が示すように、AIは確実に業務を変革する力を持っている。

導入の課題と対策

しかし、AI導入には落とし穴もある。最大の失敗要因は「いきなり大規模に導入すること」である。まず現状の業務プロセスを整理し、AIで解決したい具体的な課題を明確にすることが不可欠だ。次に、小規模なパイロットプロジェクトから始め、効果を検証しながら段階的に拡大していくアプローチが成功の鍵となる。また、従業員の不安を解消するため、AIは人の仕事を奪うものではなく、サポートツールであることを丁寧に説明し、研修を実施することも重要である。外部の専門家やコンサルタントの支援を受けることで、自社に最適なAI活用方法を見つけ、導入リスクを最小限に抑えることができる。

実践ステップ

AI活用は、もはや「検討する」段階から「実行する」段階に移っている。競合他社がAIを活用して生産性を向上させる中、導入を先送りすることは競争力の低下を意味する。まずは無料や低価格のAIツールを試し、自社業務への適用可能性を探ることから始めるべきだ。重要なのは、完璧な計画を立てることではなく、小さく始めて学習しながら改善していくことである。社内にAI推進チームを作り、定期的に成果を共有することで、組織全体のAIリテラシーも向上する。今こそ、中小企業がAIの力を借りて飛躍的な成長を遂げるチャンスだ。一歩踏み出すことで、想像以上の変革が待っている。

まとめ

中小企業のAI活用は、もはや特別なことではない。定型業務の自動化から始め、段階的に拡大していくことで、確実に成果を出すことができる。重要なのは、自社の課題を明確にし、適切な支援を受けながら進めることだ。AI導入は投資ではなく、未来への必要な一歩なのである。

続きを見る >

開発の遅延「技術的にはできます」の罠

素人仕様と開発遅延

なぜ、システム開発の進捗が悪いのか?
それは、ずばり素人が考えた仕様を開発者に伝えてしまうからである。
すべての原因ではないが、もしシステムのユーザー側の現場担当者や営業担当者がシステム仕様を決めている場合は、ほとんどの場合で満足のいくスピード感はだせていない。

潜む技術的負債

システム仕様さえ伝えていれば、きちんと動くものを作ってくれるので、あとはスピードを上げるだけ。と考えているようであれば、技術的負債が溜まっていることに気付けていない。非エンジニアが決して理解できない技術的負債の怖さは、開発スピードが遅いということだけではない。開発者側から見てシステムが複雑になっていて、メンテナンス性も低い状態になっている。

「できます」の罠

非エンジニアには技術的負債は見えないし説明もわからないことと思う。しかし、技術力でカバーしてくれているから、きちんと動いているのだと思っているなら、それは実は技術力ではない。
「技術的にはできます」このような言葉を聞いたことはないか?
システムエンジニアは「できない」と言えない。「できないことはない」ということが価値なので、素人が考えたシステム仕様でも、言われた通りに作ってしまう。

持続可能な開発へ

システムエンジニアから「技術的にはできます」を聞いたときは、いったん立ち止まるべきである。
エンジニアには、様々な影響範囲や未来のメンテナンス性への懸念などが見えている。これを必要以上のコストだと考えるのか、必要コストと考えるのかで、技術的負債は変わる。

まとめ

自分の理解の範囲でしか人間は発想しないので、システムのことを知らない非エンジニアは、システム仕様を考えるべきではないと言える。また逆に、システムにおいてはシステムエンジニアの方が発想の幅は広いが、業務に関する知識は乏しい。
システムをよく知り業務のこともわかるシステムエンジニアがシステム仕様を考えるべきだが、そんな万能な人は多くはない。だから、その間を取り持つ人間が重要なのである。

続きを見る >

相場の不在

開発の相場観

相場とは、一般的に市場で競争売買によって決まる商品の価格とされているが、ことシステム開発においては、相場というものが存在しない。

比較の難しさ

比較できる同じものであれば競争原理が働き相場が構築されるが、フルスクラッチされるシステム開発においては全く同じものができることはない。しかも、出来上がるものはパッケージシステムやSaaSの利用以外は、未来にしか完成しないので当然比較もできないものとなる。

将来要件判断

比較的ないからこそ、しっかりと吟味する必要があるが、吟味する材料や条件などは現時点で明確になるものが元となる。未来に発生する追加条件や変更される環境などはジャッジする時点にはすべて出そろわないという難しさがある。

変化への対応

システム開発は未来にどのような条件変更やルール変更が行われるかわからないものであるという認識を持つことが大切である。その上で最善のジャッジを行うべきである。その判断は過去を遡って正解か間違いかを評価すべきではない。

まとめ

日本では原点方式の人事評価が行われるため、イノベーションは起こりにくい本質的な問題がある。これを無視して「DXだ」といっている組織があるとすれば、それは本質を見誤っているといえる。

続きを見る >