なぜベトナムは比較的ライトウェイトなWeb開発に向いているか

導入

Web開発は様々な分野が存在しますが、ベトナムは比較的ライトウェイトなWeb開発に適していると言えます。本記事では、Web開発のいくつかのカテゴリについて検討し、ベトナムでのオフショア開発の適性について評価します。

カテゴリ1: 古典的なホームページ開発

古典的なホームページ開発について考えます。現在でも、完全なスクラッチでのホームページ開発が行われることもありますが、一般的にはWordPressなどのフレームワークが使用されることが多いです。このカテゴリについては、利点と欠点がありますが、ベトナムがオフショアに向いているかどうかは、まずは中立的な評価となります。

まず欠点から述べると、デザイン要素が大きいために海外での開発には向いていないと言えます。企業のウェブサイトや商品紹介ページ、ランディングページなどは、マーケティングの観点からデザイン要素が重要です。これらはウェブ開発やHTMLの問題ではなく、デザインの問題であり、プロジェクトの規模的に技術的な開発とデザインの分野が結合していることも多いです。このようなプロジェクトを海外にアウトソースすることは適切ではありません。ベトナムであろうと他の国であろうと、同様の理由が当てはまります。また、ベトナムの開発会社が日本語に堪能であっても、最も難しい分野を外国人に依頼していることを考えるべきです。

一方で、利点について考えましょう。デザインとウェブ開発の分業体制が進んでおり、古典的なホームページ開発の事例は少なくなってきています。従って、ある程度の分業体制が整っている場合は、一部をベトナムにアウトソースすることは合理的です。具体的には、デザイン部分を日本国内で行い、コーディングのみをベトナムで行う方法が考えられます。また、WordPressの記事やショッピングのCMSにおける商品加工など、既にデザインがテンプレート化されている場合もあります。Webは様々な使い方ができるため、適切な開発方法を選ぶためには、日本国内でキャリアのある人材を選択することが重要です。しかし、開発のシステム化を進める企業にとっては、一部の工程をアウトソースすることは有益です。

カテゴリ2: アプリケーションのウェブインターフェース

次に、アプリケーションのウェブインターフェースについて考えます。システムの本質的な価値はデータベースにありますが、検索や編集、書き込みなどにウェブ技術が使用されることは一般的です。また、これはスマートフォンアプリの開発にも大きく関連しています。特にビジネス用途のスマートフォンアプリは、実際にはサーバーやデータベースへのウェブインターフェースに過ぎないことが多いです。

このような開発においては、ベトナムが向いています。デザイン要素や言葉の使い方についてあまり心配する必要がなく、英語で開発しても大きな影響はありません。正確な判断基準を明確に整理できることが、現実的には最も簡単です。過去には、ウェブをシステムのインターフェースとして使用する方法には多くのノウハウが必要でした。例えば、JavaScriptを使ってカレンダーをポップアップさせたり、メールの文字化けに対処するための独自のルールが存在しました。しかし、Bootstrapなどのライブラリ化により、これらの問題は解決されました。そのため、ベトナムのエンジニアの若さや素早さを活かして、新しい技術を学びながら開発を進めることが可能です。

ただし、このような開発には継続性がないという問題もあります。長期間にわたって使用されるシステムではありますが、このような仕事には継続性が求められません。したがって、最適な解決策が存在しない場合でも、状況に合わせて適切な方法を見つける必要があります。

結論

ベトナムは比較的ライトウェイトなWeb開発に向いていると言えます。古典的なホームページ開発においてはデザイン要素が重要であり、海外にアウトソースすることは適切ではありません。しかしその開発工程において分業化や標準化がすでになされている場合は、オフショア開発を検討することは有益でしょう。また、ビジネス用途のアプリケーションのウェブインターフェースにおいては、ベトナムのエンジニアが若さと素早さを活かして開発を進めることができます。
これらの開発においては、WordPressやBootstrapなどのツールやフレームワークを活用することで効率的な開発が可能です。企業のシステム開発においては、オフショア開発の一部を活用することで生産性を向上させることができるでしょう。

関連記事

2025年AI活用トレンド

2025年のAI活用

2025年は企業におけるAI活用が実証実験から本格導入へと移行する転換期となっている。生成AI市場は急速な拡大を続けており、専門人材の不足を補うソリューションとして中堅企業にも急速に普及が進んでいる。大手企業では数百億円規模の投資計画が発表され、業務効率化だけでなく新規事業創出への期待も高まっている。本記事では、2025年に押さえておくべきAI活用の主要トレンドを解説する。

自律型AIエージェントの台頭

2025年の最大のトレンドは「AIエージェント」の台頭である。エージェント型AIは、ユーザーが設定した目標に向けて自律的に計画を立て行動する新しいAIシステムであり、従来のAIアシスタントとは異なり人間からの直接的な指示がなくても主体性を持って行動できる点が特徴である。また、画像、音声、テキストを統合的に処理するマルチモーダル技術の進化により、業務プロセスは新たな段階へと移行している。複数の情報形式を同時に分析することで、これまで見えなかった相関関係の発見が可能となり、意思決定の精度向上に貢献している。

成功と失敗の分岐点

一方で、AI導入には課題も存在する。2024年の実績から、導入効果に大きな差が生じていることも明らかになってきた。成功企業と失敗企業の分岐点として、経営層のコミットメント、段階的な展開計画、現場との密な連携が挙げられている。さらにAIの過剰な期待の時代から、AIの成果が問われる時代へと移行しており、企業は投資から明確で測定可能な価値を生み出す準備が求められている。加えて、AIガバナンスと偽情報対策の重要性も増しており、AIの責任ある活用と安全な運用が求められている。セキュリティリスクへの対応も含め、戦略的なAI導入計画の策定が不可欠となっている。

段階的導入の重要性

AI活用を成功させるためには、いきなり大規模導入を目指すのではなく、自社の課題を正確に把握した上で小規模な実証実験から始めることが推奨される。成功企業に共通するのは、経営層の強いコミットメント、段階的な展開計画、そして現場との密な連携である。特に重要なのは、AIを単なるツールとしてではなく、業務プロセス全体を見直す契機として捉えることである。現場の声を反映しながら、継続的な改善サイクルを回すことで、投資対効果を最大化できる。外部の専門家による伴走支援を受けながら、自社に最適なAI活用戦略を構築していくことが成功への近道となるであろう。

まとめ

2025年のAI活用は、AIエージェントやマルチモーダル技術の進化により大きな転換期を迎えている。しかし、成果を出すためには段階的な導入計画と現場との連携が不可欠である。ROIの実証やガバナンス体制の構築も含め、戦略的なアプローチでAI活用を推進していくことが求められている。

続きを見る >

ローコード開発とAI活用

AIとローコードの融合

ローコード開発プラットフォームの普及により、非エンジニアでもアプリケーション開発が可能になった現在、生成AIの活用が大きな注目を集めている。ChatGPTやCopilotなどのAIツールを組み合わせることで、開発スピードがさらに向上すると期待されているが、本当にすべてのローコード開発にAIが必要なのだろうか。コスト、品質、保守性など多角的な視点から、AI導入の真の価値を見極めることが、企業のDX戦略において極めて重要になっている。

コード生成の現実

生成AIによるコード生成は確かに魅力的だが、実際の品質には課題がある。AIが生成するコードは、単純な処理であれば高品質だが、複雑なビジネスロジックや例外処理が絡むと、不完全なコードが生成されることが少なくない。さらに深刻な問題は要件定義の壁である。AIは与えられたプロンプトに基づいてコードを生成するが、曖昧な要件や暗黙の前提条件を正確に理解することは困難である。結果として、開発者は生成されたコードを詳細に検証し、修正する必要があり、期待したほどの効率化が実現しないケースも多く見られる。

保守性のコスト

AIを活用したローコード開発において、最も見落とされがちなのが保守性の課題である。AI生成コードは、その時点では動作しても、後から読み解くことが困難な構造になっていることがある。変数名が不適切だったり、処理の意図が不明瞭だったりすると、半年後に修正が必要になった際、開発担当者が変わっていた場合、大きな手戻りが発生する。また、AIツールのバージョンアップや仕様変更により、過去に生成されたコードとの互換性が失われるリスクも存在する。初期開発のスピードを重視するあまり、長期的な運用コストが膨らんでしまっては本末転倒である。真のDX推進には、目先の効率化だけでなく、持続可能な開発体制の構築が不可欠なのである。

適切な見極め

ローコード開発におけるAI活用は、すべてのケースで必須というわけではない。定型的な画面開発や単純なCRUD操作など、パターン化された開発にはAIが有効だが、複雑なビジネスロジックや高度なセキュリティが要求される領域では、人間による丁寧な設計と実装が重要である。重要なのは、プロジェクトの性質、チームのスキルレベル、長期的な保守計画を考慮した上で、AIを活用すべき領域と従来手法を維持すべき領域を明確に区分することである。段階的にAIツールを導入し、効果を検証しながら適用範囲を拡大していく慎重なアプローチが、失敗リスクを最小限に抑え、真の生産性向上につながる。

まとめ

ローコード開発へのAI導入は、万能の解決策ではなく、適材適所で活用すべきツールである。コード生成の質、要件定義の難しさ、保守性の課題を十分に理解した上で、自社の開発体制に合った形でAIを取り入れることが成功の鍵となる。短期的な効率化だけでなく、長期的な運用まで見据えた戦略的な判断が求められている。

続きを見る >

Power Appsで簡単に業務改善

システム開発の高コストと複雑化

多くの企業では、情報システム部門や外部システム会社にシステム開発を依頼すると、仕様確認が繰り返される。「この機能はどうするか?」「ステータスはこれで全てか?」など、質問が多く、時間とコストが増大。結果、システムは複雑化し、現場のニーズに即したシンプルな解決策から遠ざかる。

野良プログラムのリスク

システム開発の手間を避けるため、各部署でExcelマクロによる「野良プログラム」が横行する。これらは各人のPCに保存され、最新版の確認が困難になり、メンテナンスも不透明。担当者がいなくなるとブラックボックス化し、セキュリティリスクも増加。放置すれば、企業全体の業務効率が低下し、情報漏洩の危険もある。

Power Appsで迅速なシステム構築

こうした問題を解決するのが、MicrosoftのPower Appsだ。従来の複雑な開発プロセスを排除し、現場担当者が自らアプリを構築できる。ドラッグ&ドロップで簡単に操作でき、セキュリティもMicrosoft標準に準拠。野良プログラムの乱立を防ぎ、システム管理とメンテナンスも容易になる。さらに、ユーザー自身がアプリを修正できるため、柔軟性も確保できる。

定量化困難な業務もデジタル化

業務のデジタル化は、数値で説明可能なタスクは簡単だが、現場には「説明しにくい」業務も多い。こうした業務は経験に依存しがちで、担当者に頼ることが多い。Power Appsは、このような曖昧な業務も迅速にアプリ化し、標準化と効率化を同時に実現する。

まとめ

Power Appsは、現場主導でアプリを作成・管理できる柔軟性を提供し、野良プログラムのリスクも解消する。複雑な開発プロセスを省き、数値化しにくい業務も効率的にデジタル化することができる。

続きを見る >