なぜベトナムはERPシステム開発に向いているか

ベトナムは、ERPシステムの開発を行うのに適した場所と言えます。特に、日本企業が自社の生産拠点や流通拠点をベトナムに持っている場合や、ERPシステムが過去に作成したwebベースのものである場合は特に向いています。ここでは、その理由について解説します。


ベトナムの市場理解と製造業との親和性

ERPは業務に直結したシステムであるため、業務理解と市場の理解が欠かせません。ベトナムを生産拠点にしていたり、ベトナム市場に製品を販売している日本企業は多いため、そのような日本企業はベトナムの物流や製造現場に慣れているからです。ベトナムの市場理解と製造業との連携により、ERPシステムの在庫管理など、製造業に特化した機能を効果的に開発することができます。これにより、生産管理や物流効率の向上を実現し、ビジネスの競争力を強化することができるでしょう。

ベトナムにおける既存の知識と日本語通訳者の能力

トナム人の日本語通訳者の能力も向上しており、生産や流通に関わる日本語も習得しています。これにより、ERPシステム開発プロジェクトの効率性が向上し、品質の高い成果物を生み出すことができます。

ベトナム国内には、日本企業の製造や流通、決済に関する知識が蓄積されています。日本企業の進出が主に製造業から始まったため、ベトナムではこれまでに日本独自の慣習や用語についての理解が深まってきました。このような環境下でERPシステムを開発することで、ベトナムとの意思疎通がスムーズに行われ、開発段階での要件の理解に対しての円滑なコミュニケーションが可能です。ベ

ベトナムのオフショア開発の特質と既存システムの改善

ベトナムのソフトウェア業界は、オフショア開発からスタートし、成熟した実装能力を持っています。しかし、そのような経緯のために上流工程については苦手です。要件定義や仕様作成の段階からベトナムに丸投げしてしまうのはあまり良いこととは言えません。その部分は日本側で行い、実装段階をベトナムで行なうのが良いでしょう。

特に20年前からのWebベースのERPシステムのリプレースや改善をする場合は、ベトナムは適切な場所と言えます。過去に作成された既存のシステムは現在の技術やセキュリティ基準に合致していない場合があります。しかし、ベトナムの開発者が現代的な技術を使ってUIやUXの改善に取り組むことで、既存システムの現代化やセキュリティの強化が可能です。 具体的には、DBはそのままにして、古い技術で作られているフロントエンド部分をリプレースすると言ったプロジェクトが良いでしょう。

関連記事

内製化の成功術

IT報酬の実態

海外と比べて日本のITエンジニアの報酬が低いという記事をよく目にする。それもそのはずで、ハイクラスIT人材は都合のいい「何でも屋」にはならないからである。

導入時の誤解

ユーザー企業やシステムのユーザーは、IT化を行うことで業務が減るという先入観を持っていることがある。システム導入を着手したときの目的を忘れて、その時、その場の課題を優先して都合よくITエンジニアを動かしてしまう。また動くITエンジニアもそこにいたりする。

システムと医療

たとえば、「お腹が痛い」と病院にいって「すぐに切開しよう」とはならないはずだ。このようにシステムにもその他にも色々な条件が絡まり合っている。システムは取り扱う情報量や関連する業務が多く導入に時間がかかる。時間がかかる結果、最初の導入目的を忘れてしまうのである。

真のIT人材価値

ハイクラスIT人材はユーザー側の状況と心理を配慮しつつ、現場のプログラマーの状況と心理を考慮して陣頭指揮できる人材といってもよいだろう。心理というのは物の言い方だけではなく、無形の財産を構築したり業務にフィットさせたりするので、プロジェクトの円滑さが変わるのだ。

まとめ

小手先だけでシステムに関するプロジェクトを推進しようとすると、「言われた通りにやった」という受動的な参加者が増えてしまう。情シスのSIer化を回避するにはITエンジニアを「何でも屋」にさせて疲弊させないことも大切である。開発チームの雰囲気作りも非常に効果がある。

続きを見る >

中小企業のAI活用入門

AI導入の選択肢

近年、AI技術の急速な進化により、大企業だけでなく中小企業にもAI活用の波が押し寄せている。しかし、多くの中小企業経営者は「AIは難しそう」「コストが高い」「専門人材がいない」といった不安を抱えている。実は、現在のAIツールは以前より格段に使いやすく、低コストで導入できるものが増えている。ChatGPTやClaude等の対話型AIから、画像認識、音声認識まで、業務に合わせて選べる選択肢が豊富にある。重要なのは、完璧を求めず、まず小さく始めることだ。

業務効率化の手法

AI活用で最も効果が出やすいのは、定型業務の自動化である。例えば、顧客からの問い合わせ対応にチャットボットを導入すれば、24時間365日の対応が可能になり、スタッフは付加価値の高い業務に集中できる。また、請求書処理や在庫管理にAI-OCRを活用すれば、手入力の時間を大幅に削減できる。ある製造業の中小企業では、品質検査にAI画像認識を導入し、検査時間を70%短縮した。別の小売業では、需要予測AIで在庫の最適化を実現し、廃棄ロスを30%削減した。これらの事例が示すように、AIは確実に業務を変革する力を持っている。

導入の課題と対策

しかし、AI導入には落とし穴もある。最大の失敗要因は「いきなり大規模に導入すること」である。まず現状の業務プロセスを整理し、AIで解決したい具体的な課題を明確にすることが不可欠だ。次に、小規模なパイロットプロジェクトから始め、効果を検証しながら段階的に拡大していくアプローチが成功の鍵となる。また、従業員の不安を解消するため、AIは人の仕事を奪うものではなく、サポートツールであることを丁寧に説明し、研修を実施することも重要である。外部の専門家やコンサルタントの支援を受けることで、自社に最適なAI活用方法を見つけ、導入リスクを最小限に抑えることができる。

実践ステップ

AI活用は、もはや「検討する」段階から「実行する」段階に移っている。競合他社がAIを活用して生産性を向上させる中、導入を先送りすることは競争力の低下を意味する。まずは無料や低価格のAIツールを試し、自社業務への適用可能性を探ることから始めるべきだ。重要なのは、完璧な計画を立てることではなく、小さく始めて学習しながら改善していくことである。社内にAI推進チームを作り、定期的に成果を共有することで、組織全体のAIリテラシーも向上する。今こそ、中小企業がAIの力を借りて飛躍的な成長を遂げるチャンスだ。一歩踏み出すことで、想像以上の変革が待っている。

まとめ

中小企業のAI活用は、もはや特別なことではない。定型業務の自動化から始め、段階的に拡大していくことで、確実に成果を出すことができる。重要なのは、自社の課題を明確にし、適切な支援を受けながら進めることだ。AI導入は投資ではなく、未来への必要な一歩なのである。

続きを見る >

野良アプリは排除すべきか?

「便利」の裏にある現場IT

シャドーITとは、企業の情報システム部門が認知・管理していない状態で、現場の判断によって導入・利用されるIT資源を指す。具体例としては、LINEやGoogleドライブ、Excelマクロなど、日常業務の中で自然発生的に使われるツールが挙げられる。これは企業としての統制外にある一方、現場の即応性や利便性を追求した工夫の結果でもあり、単なるルール違反と一括りにはできない。ゆえに、これを「排除すべき野良アプリ」として扱うことが妥当かどうか、慎重な見極めが必要である。

IT部門を飛び越える理由

現場がシャドーITを使う背景には、既存システムの使い勝手の悪さや、IT部門の対応の遅さといった事情がある。業務は待ってくれない以上、迅速な判断や情報共有のために、現場が自ら使いやすいツールを選ぶのは自然な流れである。たとえば、社内の共有フォルダではなくGoogleドライブを使ったり、煩雑な申請フローをExcelマクロで簡素化したりといった工夫は、業務効率の向上に寄与している。現場がスピードと柔軟性を求める限り、IT部門の枠組みに収まらないツール活用は今後も続くはずだ。

シャドーITのリスク

便利な一方で、シャドーITには深刻なリスクも存在する。まず、セキュリティが担保されていないツールの使用は、情報漏洩やマルウェア感染といったリスクを高める。また、IT部門の管理外にあるため、データの一元管理ができず、連携の取れないシステムが乱立することで、かえって非効率になることもある。最悪の場合、コンプライアンス違反や内部統制の崩壊を引き起こす可能性も否定できない。利便性の裏には常にリスクが潜んでいるという現実を直視する必要がある。

市民開発と再定義

ただし、シャドーITの存在は、現場が自らITを活用しようとする前向きな姿勢の表れでもある。近年ではDXの進展に伴い、「市民開発」や「ローコード開発」など、現場主導のIT活用が注目を集めている。従来は否定されてきたシャドーITも、企業変革の一端を担う可能性を秘めている。IT部門がすべてを統制するのではなく、現場と協力しつつガバナンスを効かせる視点に立てば、シャドーITは排除すべき“野良”ではなく、むしろ育てるべき“創造”として再定義できるはずだ。

まとめ

現場の柔軟性と全社最適を両立させるには、両者を理解した経営の舵取りが欠かせない。「排除」ではなく「共存」の設計に踏み出すことこそが、企業のDXを推進するための鍵となる。

続きを見る >