ベトナムオフショア開発に向く3つのプロジェクトと、向かない3つのプロジェクト

ベトナムに向くプロジェクトの特徴

ベトナムへのソフトウェアのオフショア開発については昔から肯定的な意見と否定的な意見があります。昨今のベトナムの人件費の向上と日本の人件費の低下、そして円安もあり、コストダウン効果が見込めなくなってきています。しかし、単に海外オフショア開発が良いか悪いかという単純な問題ではなく、ベトナムの特徴を踏まえて、どのようなプロジェクトが向いているのか見極めることが重要です。本記事では、ベトナムにおけるオフショア開発に向く3つのプロジェクトと、向かない3つのプロジェクトを紹介します。

ベトナムに向くプロジェクト

1. 生産拠点や流通拠点を持つERPシステム開発

日本企業がベトナムに自社の生産拠点や流通拠点を持ちそのためのERPシステムを開発する場合、ベトナムは適した場所と言えます。ベトナム企業はベトナムの市場に精通しており、日本企業もベトナムの物流や製造現場に慣れています。また、ERPシステムの構築経験も蓄積されており、ベトナムのソフトウェア業界は成熟しています。さらに、ベトナム人の日本語通訳者の能力も向上しており、生産や流通に関わる日本語も習得しています。このような環境下でのERPシステム開発は、効率的かつ円滑に進めることができます。

2. ライトなWeb開発など経験を必要としない開発分野

技術の進化が激しいWeb開発など、比較的ライトで長年の経験を必要としない開発分野においても、ベトナムは適した場所と言えます。これらの分野では、若くて習得の早い技術者が求められます。ベトナムの技術者は熱意を持ち、新しい技術の習得に積極的です。また、技術自体も日本やベトナムといった特定の地域に依存せず、汎用性の高いものが多いため、ベトナムの技術者との協力により効果的な開発が行えます。

3. BPO的なプロジェクトでの教師モデル開発や画像タギングなど

ベトナムはAIにおける教師モデルの開発や画像のタギングなどのBPO的なプロジェクトにも適しています。ベトナムの基礎教育レベルは高く、労働者の字の読み書きやPCの使用能力に問題はありません。また、ベトナムはピラミッド型組織を構築しやすい文化的環境が整っているので大量生産に向いています。これらの要素を活かして、BPO的なプロジェクトをベトナムで展開することは効果的です。

ベトナムに向かないプロジェクト

1. コストダウンが目的のインクルーシブなプロジェクト

単純なコストダウンが目的のインクルーシブなプロジェクトは、ベトナムにとって戦略的な選択肢とは言えません。最初は若くて安いエンジニアを投入することで一時的なコストダウン効果を得るかもしれませんが、時間が経つにつれて人件費が上昇し、コストが増加してしまいます。また、ベトナムのエンジニアも自身のキャリアパスを考えるため、離職率が高く、人材の取り替えが困難になる場合もあります。

2. AIなど最先端技術のラボラトリーとしてのプロジェクト

ベトナムはAIなどの最先端技術のラボラトリーには向いていません。ベトナムは積極的な技術開発を行っていますが、他の国々も同様に積極的であり、特にアドバンテージがあるわけではありません。また、最先端技術になるほど人件費が高くなり、ベトナム価格でも他の国と競争することが難しい場合があります。このような背景から、ベトナムにおける最先端技術の開発には慎重な判断が求められます。

3. 最終消費者向けのセールスやマーケティングシステム

最終消費者向けのセールスやマーケティングシステムは、ベトナムとの文化や商習慣、法律、税制などの違いにより、開発が困難となる場合があります。ベトナム側で日本のマーケットに適したシステムを開発することは難しく、逆に日本側でもベトナム市場に合わせたシステムを構築することは容易ではありません。ただし、バックエンドのシステムに関しては国による違いは少ないため、ERPのようなバックエンドのシステム開発はベトナムでも適しています。

以上がベトナムにおけるオフショア開発に向くプロジェクトと向かないプロジェクトの一例です。プロジェクト選定においては、ベトナムの特徴や環境を的確に把握し、ベターな組み合わせを選ぶことが成功への重要な戦略となります。

関連記事

開発費用値下げの危険性

開発手法の選択基準

大がかりなシステム開発においては、ウォーターフォールモデルという開発手法がとられ、設計書などのドキュメント類も整理してから、プログラミングへ着手する。逆に中小規模なシステム開発においては、アジャイル開発と呼ばれ、プログラミングをしながらシステム開発が進められたり、ドキュメント類は簡易にして、プログラミング工程へ着手するといった方法がとられる。状況に応じて開発手法は使い分ける必要がある。

設計書の必要と課題

建築では図面なく建物を建てることはないが、中小規模のシステムについては簡単な概要だけでシステムの開発ができてしまう。もちろん設計書をしっかりと書いて、要件を詰めてシステム開発を進めることができれば、トラブルもなくていいのではないかと言われる。しかし、設計書を作成するにはシステムをプログラミングすることと同じくらい費用が掛かる。

設計書の粒度と要因

中小規模のシステム開発において設計書が簡易になってしまう理由は、ユーザー側や発注側の予算が乏しいという理由がある。建築のパターンの場合は、法律によって作成しなければならない図面や、施主から同意をもらうべき書類などが決められている。システム開発には法的に作成しなければならない書類が明確にされているわけではないため、この粒度が各社・各エンジニアによりバラツキが発生する。

文書管理の現状

中小規模のシステム開発において、最悪の場合は設計書がないケースもある。小さなプロジェクトの場合は予算も少なく特にドキュメント類がないが多くある。あるいは、システムはアップデートされ続けているのにドキュメントはアップデートされていなかったり、ひどい場合にはシステム保守ベンダーが紛失している場合もある。

まとめ

システム開発に時間がかかる理由は、設計書から作成することでプログラミング作業の2倍以上の時間がかかると言われる。いわゆる動作検証の工程まで入れるとプログラミング作業の3倍程度は時間がかかる。また、システム開発はほとんどが人件費である場合が多く、かかる時間に応じて費用が上がる。つまり、非エンジニアが単純に開発費用を値切ると、プログラミング以外の重要な情報を削っていくことになる。

続きを見る >

AIで何ができるのか

AI vs 人間

AIは人間を超えるのか?などの質問をされることがよくある。シンギュラリティと呼ばれているが、超える超えないの単一線上で比較できるものではないと考える。たとえば、計算の速さだけでいうと人間よりも、はるかに早いと言える。

AI導入の両面性

とにかく労働人口の減少によって、機械化やAI化が急がれていると思う。すでに、画像作成や文章作成などは置き換わっている事例も多くみられるようになった。そんな中で、よくあるのが「AIで何かできませんか?」という問い合わせである。

AI時代のDX

DXという概念にも通ずる話だが、デジタル化するだけでは、いわゆるデジタル変革にはならない。ペーパーレス化ってやつだ。同じように、AIを使うことを目的としてしまうと業務に対して便益がない場合も多いようだ。したがって、AIを利用するということをDXと定義するのであれば、日常業務を整理して、どこをAIに任せるのかを検討することが大切である。

AI活用の極意

AIにも得手不得手があり、計算はもちろん得意だが、質問の仕方や指示の仕方で活用レベルは大きく変わる。プロンプトと呼ばれるものはコピーして使えるが、AIを活用しきろうとするならば、自分でプロンプトを考えれる必要がある。つまり、現時点では賢いAIなのではなく、使う側が上手に使わないとならない。

まとめ

AIの使いどころについて、多くは無理やり使おうとするため、AIを活用する場面でないことも多くある。また、ユーザー企業に関わらずシステム会社でもAIの活用は進んでおり、画像の生成やプログラミングの一部はすでに人間が行わなくてもよい段階にある。これから先もこれは加速することだろう。

続きを見る >

生成AI活用術

生成AIと業務の未来

近年、ChatGPTをはじめとする生成AIが急速に普及し、ビジネスシーンでの活用が注目されている。文章作成、データ分析、アイデア創出など、これまで人間が時間をかけて行っていた業務を、AIが短時間で支援できるようになった。特に中小企業においても導入ハードルが下がり、生産性向上のための強力なツールとして認識されつつある。しかし、単にツールを導入するだけでは効果は限定的である。業務フローに適切に組み込み、活用方法を理解することが成功の鍵となる。

5つの活用法

生成AIは様々な業務シーンで活用できる。まず、メール文面や報告書などの文書作成では、下書きの自動生成により大幅な時間短縮が可能だ。次に、会議の議事録作成では、音声データから要点を抽出し整理できる。カスタマーサポートでは、よくある質問への回答案を即座に生成し、対応品質の向上と担当者の負担軽減を実現する。マーケティング分野では、SNS投稿文やキャッチコピーのアイデア出しに活用でき、クリエイティブな業務も効率化される。さらにデータ分析では、複雑なデータから傾向を読み取り、レポート作成まで支援してくれる。

注意点

一方で、生成AI導入には課題も存在する。最も多い問題は、社員のITリテラシーの差による活用格差である。一部の社員だけが使いこなし、組織全体の生産性向上につながらないケースが見られる。また、生成された内容の精度確認を怠り、誤った情報をそのまま使用してしまうリスクもある。セキュリティ面では、機密情報を不用意にAIに入力してしまう情報漏洩の懸念がある。さらに、AIに過度に依存することで、社員の思考力や創造性が低下する可能性も指摘されている。これらの課題に対しては、適切な社内ガイドラインの策定、定期的な研修の実施、そして人間の判断を最終確認として残す仕組みづくりが重要である。

活用の3原則

生成AIを効果的に活用するためには、いくつかのポイントがある。第一に、AIはあくまで「支援ツール」であり、最終的な判断は人間が行うという原則を徹底することである。第二に、段階的な導入を心がけ、小規模なプロジェクトから始めて成功体験を積み重ねることが大切だ。第三に、定期的な効果測定を行い、どの業務でどれだけの時間削減ができたかを可視化することで、改善点が明確になる。また、社内でベストプラクティスを共有し、ナレッジを蓄積することも重要である。AIと人間がそれぞれの強みを活かし、協働することで、単なる効率化を超えた価値創造が可能になる。

まとめ

生成AIは業務効率化の強力な武器だが、導入方法次第で効果は大きく変わる。適切な活用シーンの選定、社員教育、セキュリティ対策を行うことで、組織全体の生産性を飛躍的に向上させることができる。まずは小さく始めて、徐々に活用範囲を広げていくことが成功への近道である。

続きを見る >