ベトナムオフショア開発に向く3つのプロジェクトと、向かない3つのプロジェクト

ベトナムに向くプロジェクトの特徴

ベトナムへのソフトウェアのオフショア開発については昔から肯定的な意見と否定的な意見があります。昨今のベトナムの人件費の向上と日本の人件費の低下、そして円安もあり、コストダウン効果が見込めなくなってきています。しかし、単に海外オフショア開発が良いか悪いかという単純な問題ではなく、ベトナムの特徴を踏まえて、どのようなプロジェクトが向いているのか見極めることが重要です。本記事では、ベトナムにおけるオフショア開発に向く3つのプロジェクトと、向かない3つのプロジェクトを紹介します。

ベトナムに向くプロジェクト

1. 生産拠点や流通拠点を持つERPシステム開発

日本企業がベトナムに自社の生産拠点や流通拠点を持ちそのためのERPシステムを開発する場合、ベトナムは適した場所と言えます。ベトナム企業はベトナムの市場に精通しており、日本企業もベトナムの物流や製造現場に慣れています。また、ERPシステムの構築経験も蓄積されており、ベトナムのソフトウェア業界は成熟しています。さらに、ベトナム人の日本語通訳者の能力も向上しており、生産や流通に関わる日本語も習得しています。このような環境下でのERPシステム開発は、効率的かつ円滑に進めることができます。

2. ライトなWeb開発など経験を必要としない開発分野

技術の進化が激しいWeb開発など、比較的ライトで長年の経験を必要としない開発分野においても、ベトナムは適した場所と言えます。これらの分野では、若くて習得の早い技術者が求められます。ベトナムの技術者は熱意を持ち、新しい技術の習得に積極的です。また、技術自体も日本やベトナムといった特定の地域に依存せず、汎用性の高いものが多いため、ベトナムの技術者との協力により効果的な開発が行えます。

3. BPO的なプロジェクトでの教師モデル開発や画像タギングなど

ベトナムはAIにおける教師モデルの開発や画像のタギングなどのBPO的なプロジェクトにも適しています。ベトナムの基礎教育レベルは高く、労働者の字の読み書きやPCの使用能力に問題はありません。また、ベトナムはピラミッド型組織を構築しやすい文化的環境が整っているので大量生産に向いています。これらの要素を活かして、BPO的なプロジェクトをベトナムで展開することは効果的です。

ベトナムに向かないプロジェクト

1. コストダウンが目的のインクルーシブなプロジェクト

単純なコストダウンが目的のインクルーシブなプロジェクトは、ベトナムにとって戦略的な選択肢とは言えません。最初は若くて安いエンジニアを投入することで一時的なコストダウン効果を得るかもしれませんが、時間が経つにつれて人件費が上昇し、コストが増加してしまいます。また、ベトナムのエンジニアも自身のキャリアパスを考えるため、離職率が高く、人材の取り替えが困難になる場合もあります。

2. AIなど最先端技術のラボラトリーとしてのプロジェクト

ベトナムはAIなどの最先端技術のラボラトリーには向いていません。ベトナムは積極的な技術開発を行っていますが、他の国々も同様に積極的であり、特にアドバンテージがあるわけではありません。また、最先端技術になるほど人件費が高くなり、ベトナム価格でも他の国と競争することが難しい場合があります。このような背景から、ベトナムにおける最先端技術の開発には慎重な判断が求められます。

3. 最終消費者向けのセールスやマーケティングシステム

最終消費者向けのセールスやマーケティングシステムは、ベトナムとの文化や商習慣、法律、税制などの違いにより、開発が困難となる場合があります。ベトナム側で日本のマーケットに適したシステムを開発することは難しく、逆に日本側でもベトナム市場に合わせたシステムを構築することは容易ではありません。ただし、バックエンドのシステムに関しては国による違いは少ないため、ERPのようなバックエンドのシステム開発はベトナムでも適しています。

以上がベトナムにおけるオフショア開発に向くプロジェクトと向かないプロジェクトの一例です。プロジェクト選定においては、ベトナムの特徴や環境を的確に把握し、ベターな組み合わせを選ぶことが成功への重要な戦略となります。

関連記事

製造業DX – IoT×ローコード活用法

IoT導入の新時代

製造業の現場では、人手不足や品質管理の課題が深刻化しているが、IoTとローコード技術の組み合わせが解決策として注目されている。従来のシステム開発には高額な費用と長期間を要していたが、ローコードプラットフォームを活用することで、現場の作業者でも直感的にIoTシステムを構築できるようになった。センサーからのデータ収集、機械の稼働状況監視、品質データの自動記録など、これまで手作業で行っていた業務を効率化できる。

ローコード開発の威力

ローコード開発プラットフォームは、プログラミング知識がなくても視覚的な操作でアプリケーションを作成できる革新的な技術である。製造現場の作業者が自分たちのニーズに合わせてリアルタイムでシステムをカスタマイズでき、IT部門への依存を大幅に減らせる。温度センサー、振動センサー、カメラなどのIoTデバイスと連携させることで、設備の予知保全や作業効率の向上を実現できる。従来の開発期間を3分の1に短縮し、コストも大幅に削減できるため、中小企業でも導入しやすくなっている。

成功事例と導入効果

実際の導入事例を見ると、ある自動車部品メーカーでは設備稼働率が15%向上し、品質不良率を30%削減できた。IoTセンサーで機械の振動や温度を常時監視し、異常を検知すると自動でアラートを発信するシステムを構築したのである。また、食品製造業では温度・湿度管理の自動化により、品質検査時間を50%短縮し、人的ミスによる製品廃棄を90%削減した。これらの成果は、現場作業者がローコードツールを使って自ら問題解決に取り組んだ結果であり、外部ベンダーに依存しない持続可能なDX推進を実現している。

未来の製造業像

IoT×ローコード技術は単なるデジタル化を超えて、製造業の競争力を根本的に変革する力を持っている。現場の知見を活かしたシステム構築により、真に使えるDXソリューションが生まれ、継続的な改善サイクルが確立される。今後はAI技術との融合により、さらに高度な予測分析や自動最適化が可能になるだろう。重要なのは小さく始めて段階的に拡張していくアプローチである。まずは一つの工程から始めて成功体験を積み重ね、徐々に全社規模へ展開していくことで、確実にDX効果を実感できる。変化に対応できる柔軟な組織作りこそが成功の鍵となる。

まとめ

IoT×ローコード技術は、製造業DXの民主化を実現する画期的なソリューションである。プログラミング不要で現場主導のシステム構築が可能になり、短期間・低コストでの導入を実現できる。成功事例が示すように、設備稼働率向上、品質改善、作業効率化など具体的な成果が期待できる。重要なのは小さく始めて段階的に拡張するアプローチであり、現場の知見を活かした持続可能なDX推進が可能になる。

続きを見る >

AIで何ができるのか

AI vs 人間

AIは人間を超えるのか?などの質問をされることがよくある。シンギュラリティと呼ばれているが、超える超えないの単一線上で比較できるものではないと考える。たとえば、計算の速さだけでいうと人間よりも、はるかに早いと言える。

AI導入の両面性

とにかく労働人口の減少によって、機械化やAI化が急がれていると思う。すでに、画像作成や文章作成などは置き換わっている事例も多くみられるようになった。そんな中で、よくあるのが「AIで何かできませんか?」という問い合わせである。

AI時代のDX

DXという概念にも通ずる話だが、デジタル化するだけでは、いわゆるデジタル変革にはならない。ペーパーレス化ってやつだ。同じように、AIを使うことを目的としてしまうと業務に対して便益がない場合も多いようだ。したがって、AIを利用するということをDXと定義するのであれば、日常業務を整理して、どこをAIに任せるのかを検討することが大切である。

AI活用の極意

AIにも得手不得手があり、計算はもちろん得意だが、質問の仕方や指示の仕方で活用レベルは大きく変わる。プロンプトと呼ばれるものはコピーして使えるが、AIを活用しきろうとするならば、自分でプロンプトを考えれる必要がある。つまり、現時点では賢いAIなのではなく、使う側が上手に使わないとならない。

まとめ

AIの使いどころについて、多くは無理やり使おうとするため、AIを活用する場面でないことも多くある。また、ユーザー企業に関わらずシステム会社でもAIの活用は進んでおり、画像の生成やプログラミングの一部はすでに人間が行わなくてもよい段階にある。これから先もこれは加速することだろう。

続きを見る >

デジタル化の誤解:効率化の落とし穴

デジタル化は効率化を保証しない

デジタル化と聞くと、多くの人が効率化を期待する。しかし、たとえばFAXで受け取った紙の受注をOCR(文字認識)でデジタルデータ化し、データベースに保存しても、それは単なるデジタル化に過ぎない。デジタル化を行うだけでは本質的な効率向上は望めず、業務フローの見直しがなければ効果は限定的だ。

非効率なフローをそのままデジタル化するリスク

最も大きな問題は、業務フローを見直さずにデジタル化を行うことだ。従来の手作業のフローをそのままデジタル化すれば、かえって作業が煩雑化し、時間がかかることもある。特にITに疎い権限者が意思決定を行う場合、このような失敗はよく見られる。「デジタル化=効率化」と誤解し、実際には逆効果となるケースも少なくない。

俯瞰できないシステム担当者の問題

システム担当者やシステム会社が、俯瞰的な視点を持たない場合も問題だ。業務フローを把握せず、指示通りにデジタル化を進めれば、非効率なシステムが出来上がる。ユーザー部門は「IT化で逆に効率が悪くなった」と感じ、最悪の場合、システムが欠陥品だと誤解されることもある。業務の流れを把握し、適切にデジタル化を進めることが必要だ。

生成AI導入の失敗例

生成AIの導入に関する相談も増えているが、その多くは「期待通りに動かない」という内容だ。その原因は、多くの場合、AIが本来必要ない箇所に導入されていることだ。たとえば、ただのデータ管理であれば、生成AIではなくRDB(リレーショナルデータベース)のほうが合理的だ。効率を上げるには、AIの利用が本当に適切かを見極める判断力が必要だ。

まとめ

「ITが分からないから任せる」という姿勢はリスクが高い。ITを知らない人がIT化を進めるのは、決算書を読めないのに経営をするのと同じだ。業務フローを理解し、技術を正しく活用するには横断的な視点と経験が不可欠だ。

続きを見る >