ベトナムオフショア開発に向く3つのプロジェクトと、向かない3つのプロジェクト

ベトナムに向くプロジェクトの特徴

ベトナムへのソフトウェアのオフショア開発については昔から肯定的な意見と否定的な意見があります。昨今のベトナムの人件費の向上と日本の人件費の低下、そして円安もあり、コストダウン効果が見込めなくなってきています。しかし、単に海外オフショア開発が良いか悪いかという単純な問題ではなく、ベトナムの特徴を踏まえて、どのようなプロジェクトが向いているのか見極めることが重要です。本記事では、ベトナムにおけるオフショア開発に向く3つのプロジェクトと、向かない3つのプロジェクトを紹介します。

ベトナムに向くプロジェクト

1. 生産拠点や流通拠点を持つERPシステム開発

日本企業がベトナムに自社の生産拠点や流通拠点を持ちそのためのERPシステムを開発する場合、ベトナムは適した場所と言えます。ベトナム企業はベトナムの市場に精通しており、日本企業もベトナムの物流や製造現場に慣れています。また、ERPシステムの構築経験も蓄積されており、ベトナムのソフトウェア業界は成熟しています。さらに、ベトナム人の日本語通訳者の能力も向上しており、生産や流通に関わる日本語も習得しています。このような環境下でのERPシステム開発は、効率的かつ円滑に進めることができます。

2. ライトなWeb開発など経験を必要としない開発分野

技術の進化が激しいWeb開発など、比較的ライトで長年の経験を必要としない開発分野においても、ベトナムは適した場所と言えます。これらの分野では、若くて習得の早い技術者が求められます。ベトナムの技術者は熱意を持ち、新しい技術の習得に積極的です。また、技術自体も日本やベトナムといった特定の地域に依存せず、汎用性の高いものが多いため、ベトナムの技術者との協力により効果的な開発が行えます。

3. BPO的なプロジェクトでの教師モデル開発や画像タギングなど

ベトナムはAIにおける教師モデルの開発や画像のタギングなどのBPO的なプロジェクトにも適しています。ベトナムの基礎教育レベルは高く、労働者の字の読み書きやPCの使用能力に問題はありません。また、ベトナムはピラミッド型組織を構築しやすい文化的環境が整っているので大量生産に向いています。これらの要素を活かして、BPO的なプロジェクトをベトナムで展開することは効果的です。

ベトナムに向かないプロジェクト

1. コストダウンが目的のインクルーシブなプロジェクト

単純なコストダウンが目的のインクルーシブなプロジェクトは、ベトナムにとって戦略的な選択肢とは言えません。最初は若くて安いエンジニアを投入することで一時的なコストダウン効果を得るかもしれませんが、時間が経つにつれて人件費が上昇し、コストが増加してしまいます。また、ベトナムのエンジニアも自身のキャリアパスを考えるため、離職率が高く、人材の取り替えが困難になる場合もあります。

2. AIなど最先端技術のラボラトリーとしてのプロジェクト

ベトナムはAIなどの最先端技術のラボラトリーには向いていません。ベトナムは積極的な技術開発を行っていますが、他の国々も同様に積極的であり、特にアドバンテージがあるわけではありません。また、最先端技術になるほど人件費が高くなり、ベトナム価格でも他の国と競争することが難しい場合があります。このような背景から、ベトナムにおける最先端技術の開発には慎重な判断が求められます。

3. 最終消費者向けのセールスやマーケティングシステム

最終消費者向けのセールスやマーケティングシステムは、ベトナムとの文化や商習慣、法律、税制などの違いにより、開発が困難となる場合があります。ベトナム側で日本のマーケットに適したシステムを開発することは難しく、逆に日本側でもベトナム市場に合わせたシステムを構築することは容易ではありません。ただし、バックエンドのシステムに関しては国による違いは少ないため、ERPのようなバックエンドのシステム開発はベトナムでも適しています。

以上がベトナムにおけるオフショア開発に向くプロジェクトと向かないプロジェクトの一例です。プロジェクト選定においては、ベトナムの特徴や環境を的確に把握し、ベターな組み合わせを選ぶことが成功への重要な戦略となります。

関連記事

AIで変わるシステム開発

開発現場の変化

近年、システム開発の現場では深刻な人材不足と納期の短縮化が大きな課題となっている。従来の手法では限界を感じている企業も多いのではないだろうか。そんな中、AI技術の急速な進化により、開発工程に革新的な変化が起きている。コード生成からテスト自動化まで、AIが開発者をサポートする時代が到来した。本記事では、AI活用によってシステム開発がどのように変わるのか、その未来像を探っていく。

日々の開発業務

実際の開発現場では、AIはどのように活用されているのだろうか。要件定義フェーズでは、AIが過去のプロジェクトデータを分析し、最適な機能提案や工数見積もりをサポートする。コーディング段階では、GitHub CopilotやChatGPTなどのAIツールが、リアルタイムでコード補完や不具合検出を行い、開発速度を大幅に向上させている。テスト工程においても、AIが自動的にテストケースを生成し、バグの早期発見を実現する。これらの活用により、開発期間の30%削減や品質向上を達成した企業も増えている。

導入の注意点

しかし、AIの導入には注意すべき点もある。最も大きな課題は、生成されたコードの品質管理である。AIは便利だが、時として不正確なコードや非効率な実装を提案することがある。そのため、開発者にはAI出力を適切に評価できるスキルが求められる。また、セキュリティ面での懸念も無視できない。機密情報を含むコードをAIに学習させることのリスクや、著作権の問題など、法的な側面も考慮が必要である。さらに、既存の開発プロセスとAIツールをどう統合するか、組織全体での運用ルール策定も重要な課題となっている。成功の鍵は、適切なガイドライン設定と継続的な教育にある。

求められるスキル

AI活用が進む中で、開発者の役割も大きく変化している。単純なコーディング作業はAIに任せ、開発者はより創造的で高度な判断を要する業務に集中できるようになる。つまり、システム全体のアーキテクチャ設計、ビジネス要件の深い理解、そしてAIが生成した成果物を評価・改善する能力が重要になるのである。AIは強力なツールだが、あくまで人間の判断を補助するものである。技術トレンドを常に学び、AIとの協働方法を模索し続ける姿勢が、これからの開発者には不可欠である。AI時代だからこそ、人間ならではの創造性と批判的思考力が、より一層価値を持つようになるだろう。

まとめ

AI技術の進化により、システム開発は新たな段階に入った。開発速度の向上や品質改善といった明確なメリットがある一方で、適切な導入戦略と運用ルールが成功の鍵となる。重要なのは、AIを単なる自動化ツールとして捉えるのではなく、人間の能力を拡張するパートナーとして活用することである。技術と人材の両面からバランスよく取り組むことで、開発工程の真の革新が実現できるだろう。

続きを見る >

開発の遅延「技術的にはできます」の罠

素人仕様と開発遅延

なぜ、システム開発の進捗が悪いのか?
それは、ずばり素人が考えた仕様を開発者に伝えてしまうからである。
すべての原因ではないが、もしシステムのユーザー側の現場担当者や営業担当者がシステム仕様を決めている場合は、ほとんどの場合で満足のいくスピード感はだせていない。

潜む技術的負債

システム仕様さえ伝えていれば、きちんと動くものを作ってくれるので、あとはスピードを上げるだけ。と考えているようであれば、技術的負債が溜まっていることに気付けていない。非エンジニアが決して理解できない技術的負債の怖さは、開発スピードが遅いということだけではない。開発者側から見てシステムが複雑になっていて、メンテナンス性も低い状態になっている。

「できます」の罠

非エンジニアには技術的負債は見えないし説明もわからないことと思う。しかし、技術力でカバーしてくれているから、きちんと動いているのだと思っているなら、それは実は技術力ではない。
「技術的にはできます」このような言葉を聞いたことはないか?
システムエンジニアは「できない」と言えない。「できないことはない」ということが価値なので、素人が考えたシステム仕様でも、言われた通りに作ってしまう。

持続可能な開発へ

システムエンジニアから「技術的にはできます」を聞いたときは、いったん立ち止まるべきである。
エンジニアには、様々な影響範囲や未来のメンテナンス性への懸念などが見えている。これを必要以上のコストだと考えるのか、必要コストと考えるのかで、技術的負債は変わる。

まとめ

自分の理解の範囲でしか人間は発想しないので、システムのことを知らない非エンジニアは、システム仕様を考えるべきではないと言える。また逆に、システムにおいてはシステムエンジニアの方が発想の幅は広いが、業務に関する知識は乏しい。
システムをよく知り業務のこともわかるシステムエンジニアがシステム仕様を考えるべきだが、そんな万能な人は多くはない。だから、その間を取り持つ人間が重要なのである。

続きを見る >

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >