オフショア開発における契約形態の選択と、重要なポイント

オフショア開発には、受託開発、ラボ開発、そして折衷型の3つの契約形態が存在します。それぞれの契約形態には特徴と課題がありますが、最終的にここで「折衷型」と述べているものに集約していく傾向があります。

受託開発契約とその特徴

受託開発契約は、成果物の納品を約束する契約形態です。この形態では、事前に成果物の定義を明確にし、それに基づいて開発を進めます。受託開発契約はソフトウェア開発においてシンプルな形態と言えますが、成果物の定義を明確にすることは容易ではありません。実際の開発作業では、概念上の定義と現実の制約との間で調整が必要となる場合があります。

ラボ開発契約とその特徴

ラボ開発契約は、クライアントが直接開発者に対して指示を出す契約形態です。クライアントは開発者を拘束し、その時間を購入します。この形態は、日本のSES契約に近いものですが、ラボ開発では開発者は非常駐となります。時間単位で開発者の貢献を購入するため、時間の品質によって成果物の品質が保証されるわけではありません。開発者によって同じ時間内でも成果物の差が生じることがあります。

折衷型契約の意義とその特徴

折衷型契約は受託開発契約とラボ開発契約の折衷案として採用されます。この契約形態では、成果物の定義を柔軟にし、一定の作業時間も確保しながら、基本的にボトムアップ型で開発を進めていきます。オフショア開発においては、ビジネスモデルやクライアントの要求を理解し、中核的な開発人材(例えば、ブリッジエンジニア)を確保することが重要です。中核的な人材はクライアントのビジネスについて深い洞察を持ち、長期的な関係を築くことができます。このような中核人材をラボ契約で時間拘束的に確保し、プロジェクトが大型化したときはスポットで追加の受託契約を行い、人を追加で確保するというものです。

折衷案に収斂していく実際のプロジェクト

受託開発としてスタートしたプロジェクトでも、ラボ開発としてスタートしたプロジェクトでも、ベトナムでのオフショア開発が成功し長く続いている案件は、最終的に折衷案に収斂していく傾向があるようです。多くの場合は海外開発拠点は、日本の開発プロジェクトの外付け工場という位置づけになりますので、クライアントのビジネスをよく知った開発者を確保しつつスケーラビリティを確保するという両方が求められることとなり、このような形に落ち着くのでしょう。

もしこの形をゴールとするのならば、下記の2点に注目するのが良いでしょう。

(a) 長期契約が必要なこと:クライアントのビジネスモデルや独自の用語を理解し、本当に重要な要素を把握するためには時間が必要です。クライアントのビジネスに寄り添いながら開発を行うためには、最低でも1年以上の長期契約が必要です。

(b) ブリッジエンジニアを始めとする中核的人材の確保が大切であること:中核的な開発人材は、クライアントのビジネスをよく理解し、ビジネスの要件に応じて開発を進めることができる人材です。彼らは長期的なパートナーシップを築き、クライアントのビジネス成果に貢献します。そのため、オフショア開発においては、ブリッジエンジニアなどの中核的な人材の確保が極めて重要です。

オフショア開発においては、契約形態の選択とビジネス戦略の統合が成功の鍵となります。ビジネスの長期的な視点と中核的な人材の確保を重視することで、効果的なオフショア開発を実現することができるでしょう。

関連記事

業務データ資産の発見と活用

AI活用の第一歩

AI活用による生産性向上のためのシステムツール構築では、過去データの利用が必要不可欠である。しかし、過去データが整備されていない場合の対処法を考えてみたい。多くの企業がAI導入を検討する際、まず直面するのがこのデータ品質の問題である。完璧なデータセットを求めがちだが、実際には現実的なアプローチで進めることが成功への鍵となる。

目的の明確化

まず「何に使いたいデータなのか」を明確にする必要がある。目的に応じて、必要なデータの「粒度・項目・量」が変わるため、いつも扱っている部門ではない人が客観的に整理するのがよいかもしれない。例えば、生産管理の異常検知であればセンサーデータの時系列とアラート履歴が必要になり、顧客離反の予測であれば購買履歴と問い合わせ履歴が必要になる。このように具体的な用途を定めることで、収集すべきデータの方向性が見えてくる。

データの現状把握

やりたいことを整理すれば、次に足りないデータなどが見えてくるはずである。このとき、データが重複していたり、欠損していたり、バラバラであったりというのも、すべてデータはあるものと考える。形式としては、Excel、CSV、紙、システム内に点在などを把握して、データの棚卸を行う。完璧でないデータでも、適切な処理を施すことで価値ある情報源に変わる。重要なのは、現在持っているデータ資産の全体像を正確に把握することである。

データ整備の実践

データの棚卸が終われば、データクレンジング(整備)の作業方針を立てる。手動で整えるのか、何らかのツールを使うのか検討が必要である。また、このツールはExtract(抽出)、Transform(変換)、Load(読み込み)の頭文字をとってETLツールと呼ばれている。Power Queryなどがその代表例である。作業量と精度のバランスを考慮し、コストパフォーマンスの高い整備方法を選択することが重要になる。自動化できる部分は積極的にツールを活用すべきである。

まとめ

データを整えていく途中で足りないデータが発見されることもあるだろう。しかし、ここからがAIの使い様である。ファインチューニング(学習させていく)ことや、生成AIやRAG(Retrieval-Augmented Generation)を利用して補完するなどが考えられる。

続きを見る >

ノウハウはタダじゃない

IT導入の難しさ

IT導入では、どの程度のコストをかけるべきか、その費用がどのように効果を生むかの判断が難しい場面が多い。正解が存在しないため、常に試行錯誤が伴うのが実情である。導入後も改善や調整が続き、理想の形を追い求めて進化し続ける必要がある。これこそが、IT導入のハードルを高める最大の要因である。

「導入=完成」の落とし穴

「導入すれば終わり」と考えると、ITプロジェクトは失敗しやすくなる。IT導入には明確なゴールがないため、段階的なチェックポイントの設計が重要となる。導入途中で要件が変化することも少なくないが、それを「失敗」とみなすのではなく、「成功への第一歩」と捉えるべきである。柔軟な対応と継続的な見直しこそが、成果につながる道である。

見積もりが難しい理由

目に見えるモノを作る場合とは異なり、ITシステムの見積もりには高い不確実性が伴う。業務の関連性、将来的な拡張性、外部環境の変化など、検討すべき要素は無数に存在する。したがって、本格的なIT導入には、実際の開発にかかる時間の2倍ほどの準備期間を設ける覚悟が必要である。余裕を持つことが、後のトラブル回避にも直結する。

DXがカオスになる訳

システム構築やDXのプロジェクトは、時間の経過とともに当初の目的を見失いやすい。最初に定めた要件が現場の混乱の中で忘れ去られ、後から新たな要求が持ち込まれることで、プロジェクトが迷走していく。現場も対応に追われ、全体が混沌としていく。こうした事態を避けるには、目的の定期的な再確認と明確な進行管理が不可欠である。

まとめ

ITに苦手意識があるからといって「なんとかしてくれ」と丸投げする姿勢では、プロジェクトは成功しない。目的や進捗のチェックポイントといった、数値化できないノウハウの積み重ねこそが、成功への鍵となる。

続きを見る >

ローコード開発≠安い

誤解されるコスト削減

実はローコード・ノーコードツールを使えば、開発が必要なくなるので安くなるというのは正しくない。たしかに、ノーコードツールを社内メンバーでCMSを使ってソフトを作るという場面は開発費用はかからない。

CMSとはコンテンツ・マネジメント・システムの略で、たとえばWebサイトのコンテンツを構成するテキストや画像、デザインなどを非エンジニアがプログラミングをせずに作成や管理できる仕組みのことである。ローコードツールはそれに加えて少しのプログラミング知識でシステムやツールを作成できることである。

開発手法の選択基準

断じてローコード開発だからといって安いわけではない。開発手法の特性による得手不得手を上手に使い分けるからトータルとして価格が安くなるということである。非エンジニア営業の金額調整という意味での判断でローコード開発を選択する場合は失敗することがある。

システム導入の本質理解

ローコード開発でも、システム導入の目的や条件が本質的にわかっていなければ、仕様要件のブレによって結果としてトータルが安くなることはない。これはローコード開発ということが問題なのではなく、フルスクラッチ開発であっても、SaaSと利用する場合であっても同じことが言える。

負債の危険

本来ローコード開発が適さない場合にも関わらず無理やりに合わせることで、プログラム部分の複雑性が増し、技術的負債となって大きな問題になっていく。結果として安くはならず、ローコード開発のメリットであるメンテナンス性までも損なうため、トータルで考えると高くなる。

まとめ

お客様の予算内で考えないといけないので、といった口癖があれば注意が必要である。クライアントの言いなり状態であれば、無理な要求は開発における仕様だけではないだろう。金額を含めた総合的な判断ができる人が、結果としてローコード開発を選択するわけである。

続きを見る >